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A convex lower bound for the real l2
parametric stability margin of linear control
systems with restricted complexity controllers

Gianni Bianchini, Paola Falugi, Alberto Tesi, Antonio Vicino

Abstract— In this paper the problem of restricted complexity
stability margin maximization (RCSMM) for single-input si ngle-
output (SISO) plants affected by rank one real perturbations
is considered. This problem amounts to maximizing the reall2
parametric stability margin over an assigned class of restricted
complexity controllers, which are described by rational transfer
functions of fixed order with coefficients depending affinelyon
some free parameters. It is shown that the RCSMM problem,
which is nonconvex in general, can be approached by means of
convex optimization methods. Specifically, a lower bound ofthe
stability margin, whose maximization can be accomplished via
Linear Matrix Inequality (LMI) techniques, is developed.

I. I NTRODUCTION

The parametric stability margin is a typical measure
of the robustness of feedback control systems subject to
parametric plant uncertainty. In particular, the stability
margin maximization (SMM) problem, i.e., the design of
controllers maximizing the parametric stability margin, has
received considerable attention in the literature (see [1]for a
comprehensive reference on this problem).
The most general result is given in [2] and it concerns the
class of uncertain systems with rank one real perturbations,
which includes single-input single-output (SISO) systems
with transfer function coefficients depending affinely on the
uncertain parameters. In that paper, Rantzer and Megretski,
exploiting the link between robust stability and robust strict
positive realness, showed that the optimization problem
can be made convex provided that a suitable controller
parameterization is employed.
Despite this remarkable result, some issues still deserve to be
investigated in order to devise satisfactory design techniques.
In particular, since the optimization problem in [2] is infinite
dimensional, suboptimal solutions must be looked for through
finite dimensional convex programming [3],[4]. Hence, a
suitable structure for the approximating solution must be
found in order to tackle the computational burden and the
complexity of the controller [2],[5].
It is also important to recall that, in the majority of practical
applications, it is often mandatory to employ controllers with
a prescribed structure, such as PID or lead-lag compensators
[6]. In this respect, it is worth to remark that a renewed
interest in the synthesis of low-order controllers, mainlybased
on robust parametric control techniques, has been observed
recently [7],[8],[9],[10]. In particular, in [10], an LMI-based
method for the design of fixed order controllers based on an
inner approximation of the stability domain of polynomials
via strictly positive real (SPR) conditions is derived.

Gianni Bianchini{giannibi@dii.unisi.it} and Antonio Vicino are
with the Dipartimento di Ingegneria dell’Informazione, Università di Siena,
Siena, Italy. Paola Falugi and Alberto Tesi are with the Dipartimento di Sistemi
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The above considerations naturally lead to the introduction
of the restricted complexity stability margin maximization
(RCSMM) problem, which amounts to maximizing the
parametric stability margin of a family of SISO uncertain
plants with rank one real perturbations over a given class of
controllers. Such a class of restricted complexity controllers
is characterized by fixed order rational transfer functions
with coefficients depending affinely on some free design
parameters.
Despite its simple formulation, the RCSMM problem
discloses several difficulties. In particular, the solution of this
problem implicitly calls for an efficient characterizationof the
restricted complexity controllers which stabilize the nominal
plant of the family. This is a very difficult task and few results
have been obtained so far (see [7],[11] for the PID case). It is
also to remark that in general the RCSMM problem cannot be
solved directly by means of convex optimization techniques
because of the restricted complexity condition imposed on
the controller class.
In this paper we extend in several respects the preliminary
results reported in [12],[13],[14] in order to relax the above
difficulties. A new characterization of the reall2 parametric
stability margin pertaining to a given stabilizing controller
of the restricted complexity class is given. More specifically,
on the basis of previous results on the design of filters
ensuring robust strict positive realness for affine families of
polynomials [15], an SPR rational function is associated to
each stabilizing controller. Such a characterization makes it
possible to compute a suitable lower bound of the stability
margin pertaining to each stabilizing controller. In particular,
the maximization of this lower bound, which provides a
locally optimal approximation of the stability margin in some
neighborhood of the given stabilizing controller, amountsto
solving a Generalized Eigenvalue Problem (GEVP) [16].

Notation: R
n: real n-space;v ∈ R

n: vector ofRn; v′: trans-
pose ofv; ‖v‖2: l2 norm ofv; A ∈ R

n×m: realn×m matrix;
A > 0: matrix A is positive definite;C: the complex plane;
s ∈ C: complex number; Re[s], Im[s]: real and imaginary parts
of s; π(s): a polynomial in the complex variables; ∂π: degree
of a polynomialπ(s); P (s): rational function ofs; M̄(s):
rational function vector/matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following class of uncertain SISO plants

P =

{

P (s; δ) =
B0(s) + δ′B̄(s)

A0(s) + δ′Ā(s)
: δ ∈ R

n

}

(1)

whereB̄(s) = [B1(s) . . . Bn(s)]′, Ā(s) = [A1(s) . . . An(s)]′,
δ = [δ1 . . . δn]′ is the uncertain parameter vector and
Bi(s), Ai(s), i = 0, . . . , n are given polynomials. In the
sequel the following simplifying assumption on the degree of
the polynomials involved in (1) will be enforced.

Assumption 1:(Plant degree constraint)

∂B0 < ∂A0 ; ∂Ai < ∂A0, ∂Bi < ∂B0, i = 1, . . . , n.
The above assumption ensures thatP (s; δ) is strictly proper
and its order is invariant with respect toδ.
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Fig. 1. Closed loopLFT representation.

Hereafter, we denote byPδ ∈ P the plant with transfer
function P (s; δ). In particular,P0 will be referred to as the
nominal plantof the family. We denote byS0 the set of
controllers stabilizingP0.
Consider the feedback interconnection of the uncertain plant
Pδ and a controllerC ∈ S0 with transfer function

C(s) =
N(s)

D(s)

where N(s) and D(s) are given polynomials. A standard
representation of the resulting feedback control loop can be
obtained via a linear fractional transformation (LFT) in the
form reported in Fig. 1, where

Ḡ(s) = −
D(s)Ā(s) + N(s)B̄(s)

D(s)A0(s) + N(s)B0(s)
.

Since the perturbationδ is a vector (i.e.,w is a scalar), this
representation is usually said to berank one.
We recall the notion of reall2 parametric stability margin [1].

Definition 1: Given the uncertain plant classP and a con-
troller C ∈ S0, the real l2 parametric stability marginρC

pertaining to such controller is defined as the maximalρ such
that the closed loop is stable for all‖δ‖2 < ρ.
We have the following well-known expression forρC .

Lemma 1:Let P andC ∈ S0 be given. Then,

ρC = sup ρ
s.t. 1 − δ′Ḡ(jω) 6= 0, ∀ω ≥ 0 ∀δ : ‖δ‖2 < ρ.

One of the most investigated robust control problems is
the parametric stability margin maximization (SMM) which
amounts to finding the controller which maximizesρC over
the class of stabilizing controllersS0 [1],[2].
Despite the fundamental results given in [2], where the SMM
problem is shown to be convex with respect to a suitable
parameterization of robustly stabilizing controllers, the actual
computation of the optimal controller shows practical difficul-
ties, especially when constraints on the controller structure are
imposed, a very common situation in practical applications.
Motivated by the above consideration, we consider the SMM
problem when the controller is assumed to have a given
structure. In particular, we introduce the following classof
restricted complexity controllers:

C =

{

C(s; ϑ) =
N(s; ϑ)

D(s; ϑ)
=

N0(s) + ϑ′N̄(s)

D0(s) + ϑ′D̄(s)
: ϑ ∈ Θ

}

(2)
where N̄(s) = [N1(s) . . . Nm(s)]′, D̄(s) =
[D1(s) . . . Dm(s)]′, Ni, Di(s), i = 0, . . . , m are given
polynomials,ϑ = [ϑ1 . . . ϑm]′ ∈ R

m is a free controller
parameter vector,Θ ⊆ R

m is of the form

Θ = {ϑ ∈ R
m : Qj(ϑ) > 0 ; j = 1, . . . , k}

beingQj(ϑ), j = 1, . . . , k symmetric matrices whose entries
depend affinely onϑ. The choice of the controller classC
in (2) is motivated mainly by practical reasons, since many
widely used structures such as PID or lag-lead can be seen
as members of such a class. The choice of the structure of
the admissible parameter setΘ is motivated by the fact that
this structure enters naturally into LMI problems and is able
to model several useful constraints on the controller, e.g.,
coefficient positivity.
We refer toCϑ as the controller with transfer functionC(s; ϑ).
In particular, without loss of generality,C0 is assumed to be
a stabilizing controller as stated next.

Assumption 2:C0 stabilizesP0, i.e., C0 ∈ S0.
Also, to avoid excessive technicalities, the following condition
on the polynomials involved in (2) is enforced.

Assumption 3:(Controller degree constraint)

∂N0 ≤ ∂D0, ∂Ni ≤ ∂N0, ∂Di < ∂D0, i = 1, . . . , m.
The above assumption ensures thatC(s; ϑ) is proper and that
its order is invariant with respect toϑ.
The problem of stability margin maximization over the class
of restricted complexity controllersC can be stated as follows,
whereρ(ϑ) denotes the parametric stability margin achieved
by Cϑ according to Definition 1, i.e.,ρ(ϑ) = ρCϑ

.
RCSMM problem.Given the plant familyP and the class of

restricted complexity controllersC, find the parametersϑ∗ ∈ Θ
such that the controllerCϑ∗ ∈ C achieves the maximum of the
closed loop stability margin over the classC, i.e.,

ρCϑ∗
= sup

ϑ∈Θ
ρ(ϑ). (3)

III. M AIN RESULTS

Several difficulties arise in solving the RCSMM problem.
In particular, in view of Definition 1, it is to observe thatρ(ϑ)
is well defined only forϑ belonging to the setΘstab∩Θ where

Θstab = {ϑ ∈ R
m : Cϑ ∈ S0} .

Therefore, solving (3) implicitly calls for an efficient charac-
terization ofΘstab. Unfortunately, this is a very difficult task
and few results have been presented so far in the literature (see,
e.g., [7],[11]). It is also to observe that the RCSMM problem
cannot be solved in general via convex techniques because of
the restricted complexity condition on the controller. Indeed, it
is not difficult to find examples which display local maxima.
In this paper, the RCSMM problem is approached in order
to relax the above difficulties. First, in Subsection III-A a
new characterization of the parametric stability marginρ(ϑ)
pertaining toCϑ, ϑ ∈ Θstab is developed. More specifically,
exploiting earlier results on Strict Positive Realness (SPR)
[15], a suitable SPR rational function is associated to eachCϑ,
ϑ ∈ Θstab, thus providing an implicit parameterization of the
setΘstab. Subsequently, on the basis of such characterization,
a lower bound ofρ(ϑ) is developed in Subection III-B. In
particular, this bound provides a locally optimal approximation
of ρ(ϑ) in some neighborhood of a given controller parameter
vector, and its maximization can be accomplished via LMI
techniques.
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A. Characterization of the reall2 parametric stability margin

The stability marginρ(ϑ) pertaining toCϑ, ϑ ∈ Θstab,
can be computed in accordance with Lemma 1 onceḠ(s) is
replaced with

Ḡ(s; ϑ) = −
D(s; ϑ)Ā(s) + N(s; ϑ)B̄(s)

D(s; ϑ)A0(s) + N(s; ϑ)B0(s)
.

However, we look for a special characterization ofρ(ϑ) which
is obtained by associating toCϑ a suitable SPR rational
function. To proceed, let us rewritēG(s; ϑ) as

Ḡ(s; ϑ) = −

[

π1(s; ϑ)

π0(s; ϑ)
, . . . ,

πn(s; ϑ)

π0(s; ϑ)

]′

(4)

where, according to the expressions in (2), the polynomials
πi(s; ϑ), i = 0, . . . , n are given by

πi(s; ϑ) =
D0(s)Ai(s) + N0(s)Bi(s) + ϑ′[D̄(s)Ai(s) + N̄(s)Bi(s)].

(5)
Note that, sinceCϑ is assumed to stabilize the nominal plant,
the polynomialπ0(s; ϑ) is Hurwitz. From (4) it follows that
the characteristic polynomial of the closed loop system has
the expression

π(s; δ; ϑ) = π0(s; ϑ) +
n

∑

i=1

δiπi(s; ϑ). (6)

It is not difficult to check that Assumption 1 and Assumption
3 ensure that the degree of the characteristic polynomial is
invariant with respect toδ and ϑ, specifically∂π = ∂D0 +
∂A0.
Let us now introduce the two functions

R̄(ω; ϑ) = Re[Ḡ(jω; ϑ)] ; Ī(ω; ϑ) = Im[Ḡ(jω; ϑ)],

the related set

Ωϑ =
{

ω ≥ 0 : Ī(ω; ϑ) = 0
}

, (7)

and the polynomial

Π(s; ϑ) =
∑n

i=1 π0(s; ϑ)πi(−s; ϑ)·
· [π0(−s; ϑ)πi(s; ϑ) − π0(s; ϑ)πi(−s; ϑ)] .

It can be verified that for eachϑ, any nonzero frequency
ω̂ ∈ Ωϑ must be a common root ofn polynomials in ω,
which implies that the existence of sucĥω is not generic
especially for largen. Therefore, the assumptionΩϑ = {0}
will be enforced in the sequel, as it holds almost everywhere
in the controller parameter space. Under this assumption, it
can be shown thatΠ(s; ϑ) is such thatΠ(jω; ϑ) 6= 0 for all
ω > 0 and therefore the following factorization holds (see also
Lemma 7 in [15]):

Π(s; ϑ) = αϑsqϑΠ1(s; ϑ)Π2(−s; ϑ) (8)

whereαϑ is a real constant,qϑ ≥ 1 is an integer andΠ1(s; ϑ),
Π2(s; ϑ) are uniquely determined monic Hurwitz polynomials.
The following result provides the sought characterizationof
ρ(ϑ).

Theorem 1:Let ϑ ∈ Θstab and supposeΩϑ = {0}.
Introduce the rational function

Φ(s; ϑ; ε, τ) =































Π1(s; ϑ)

Π2(s; ϑ)
(1 + τs)∂Π2−∂Π1 for even qϑ

Π1(s; ϑ)

Π2(s; ϑ)
(s + ε)ξ1 ·

·(1 + τs)ξ2

for odd qϑ

whereε andτ are positive scalars, and

ξ1 = sgn[αϑ(−1)(qϑ−1)/2]

ξ2 = ∂Π2 − ∂Π1 − sgn[αϑ(−1)(qϑ−1)/2],

beingΠ1(s; ϑ), Π2(s; ϑ), αϑ, qϑ as in (8). Then, for allρ such
that 0 < ρ < ρ(ϑ), there existε > 0 andτ > 0 such that

1) Φ(s; ϑ; ε, τ) is SPR
2) The following inequality holds

ρ < ρΦ(ϑ; ε, τ) ≤ ρ(ϑ) (9)

where
ρΦ(ϑ; ε, τ) = inf

ω≥0
rΦ(ω; ϑ; ε, τ) (10)

being

rΦ(ω; ϑ; ε, τ) = ‖R̄(ω; ϑ) − γΦ(ω; ϑ; ε, τ)Ī(ω; ϑ)‖−1
2 (11)

and

γΦ(ω; ϑ; ε, τ) =
Im[Φ(jω; ϑ; ε, τ)]

Re[Φ(jω; ϑ; ε, τ)]
.

Proof: See Appendix.
The above Theorem provides a new characterization of

the real l2 parametric stability marginρ(ϑ) pertaining to
a controllerCϑ, ϑ ∈ Θstab. The key element is the SPR
rational function Φ(s; ϑ; ε, τ), which is computed via the
polynomial factorization (8) and the appropriate selection of
the parametersε and τ . In this respect, some remarks are in
order.

Remark 1:The proof of Theorem 1 makes it clear that, for
sufficiently smallε, τ , Φ(s; ϑ; ε, τ) is SPR andρΦ(ϑ; ε, τ) is
a quite good approximation ofρ(ϑ). By taking into account
the role of ε (Π(s; ϑ) has a singularity ats = 0) and τ
(Φ(s; ϑ; ε, 0) may not be biproper), it turns out thatε (resp.
1/τ ) should be chosen at least one decade smaller (resp. larger)
than all the singularities ofΠ1(s; ϑ) andΠ2(s; ϑ).

Remark 2: It is not difficult to show that the order of
Φ(s; ϑ; ε, τ) is related to that of the plant classP in (1) and
the controller classC in (2). Indeed, exploiting (5), (6), and
(8), it turns out that the order ofΦ(s; ϑ; ε, τ) is no larger than
2(∂A0 + ∂D0) (see [15]).

Remark 3:The assumptionΩϑ = {0} ensures continuity
of the reall2 parametric stability marginρ(ϑ) [1],[17]. The
violation of this assumption, which can be readily detected
according to the comments related to (7)-(8), makes it possible
that the stability marginρ(ϑ) is discontinuous at some point
ϑ = ϑd. Such a discontinuity issue has been investigated
in several papers and regularity results have been derived
[18], [19], [20], [1],[17], also exploiting the link with the
computation of the structured singular valueµ for rank-one
uncertainty [18], [19], [20]. Finally, we note that an expression
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for an SPRΦ(s; ϑ; ε, τ) can be obtained also in the non-
generic case ofΩϑ 6= {0}.

B. An LMI lower bound to the reall2 parametric stability
margin

The characterization in Subsection III-A provides an im-
plicit parameterization ofΘstab. However, the maximization
of the approximating quantityρΦ(ϑ; ε, τ) with respect toϑ ∈
Θstab ∩ Θ cannot be solved by convex optimization methods
directly. In the sequel, a suitable lower bound ofρ(ϑ), whose
maximization can be carried out by means of a standard GEVP,
is developed.
To proceed, letθ ∈ Θstab be given, and consider the
corresponding closed loop nominal characteristic polynomial
π0(s; θ) in (6). Let Φ(s; θ; ε, τ) be computed as in Theorem
1 for some positiveε, τ and consider the rational function

Ψ(s; ϑ; θ; ε, τ) = Φ(s; θ; ε, τ)
π0(s; ϑ)

π0(s; θ)
(12)

which depends affinely onϑ and obviously satisfies
Ψ(s; θ; θ; ε, τ) = Φ(s; θ; ε, τ). Moreover, sinceΦ(s; θ; ε, τ)
is SPR, it follows that alsoΨ(s; ϑ; θ; ε, τ) is SPR for allϑ in
some neighborhood ofθ. In this respect, we have the following
result.

Lemma 2:Let Θθ = {ϑ ∈ Θ : Ψ(s; ϑ; θ; ε, τ) is SPR}.
Then,Θθ ⊆ Θstab.

Proof: We first observe that, sinceΨ(s; ϑ; θ; ε, τ) de-
pends affinely onϑ, Θθ is a convex set. SinceΦ(s; θ; ε, τ) is
SPR, from (12) we have that for anyϑ ∈ Θθ the following
inequality holds

|arg[π0(jω; ϑ)] − arg[π0(jω; θ)]| =
|arg[Ψ(jω; ϑ; θ; ε, τ)] − arg[Φ(jω; θ; ε, τ)]| < π, ∀ ω ≥ 0.

Recalling that the degree ofπ0(s; θ) is invariant with respect
to ϑ, from the Bounded Phase Lemma [1] we have that
all the polynomials of the following one-parameter family
{(1 − λ)π0(s; θ) + λπ0(s; ϑ), λ ∈ [0, 1]} have the same
stability properties. Hence, the proof follows from Hurwitzness
of π0(s; θ) and convexity ofΘθ.
The above lemma ensures that, for anyϑ ∈ Θθ, the rational
function

γΨ(ω; ϑ; θ; ε, τ) =
Im[Ψ(jω; ϑ; θ; ε, τ)]

Re[Ψ(jω; ϑ; θ; ε, τ)]

is bounded for allω ≥ 0. As a consequence, we can define
the function ofϑ

ρΨ(ϑ; θ; ε, τ) = inf
ω≥0

rΨ(ω; ϑ; θ; ε, τ) (13)

where

rΨ(ω; ϑ; θ; ε, τ) = ‖R̄(ω; ϑ) − γΨ(ω; ϑ; θ; ε, τ)Ī(ω; ϑ)‖−1
2 .
(14)

Note that, according to (12), the dependence ofρΨ(ϑ; θ; ε, τ)
on ε andτ is inherited by the computation ofΦ(s; θ; ε, τ) as
in Theorem 1 (see also Remark 1). The result that follows
relatesρΨ(ϑ; θ; ε, τ) with the stability marginρ(ϑ) and its
approximating quantityρΦ(ϑ; ε, τ).

Lemma 3:Let θ ∈ Θstab. Then, the following properties
hold for the functionρΨ(ϑ; θ; ε, τ).

1) ρΨ(ϑ; θ; ε, τ) is a lower bound ofρ(ϑ), i.e.,

ρΨ(ϑ; θ; ε, τ) ≤ ρ(ϑ) ∀ϑ ∈ Θθ. (15)

2) ρΨ(ϑ; θ; ε, τ) is equal toρΦ(ϑ; ε, τ) for ϑ = θ, i.e.,

ρΨ(θ; θ; ε, τ) = ρΦ(θ; ε, τ). (16)
Proof: Lemma 2 ensures that bothρΨ(ϑ; θ; ε, τ) andρ(ϑ)

are well defined for anyϑ ∈ Θθ. Moreover, observe that, for
fixed θ, ε, τ , both γΨ(ω; ϑ; θ; ε, τ) and rΨ(ω; ϑ; θ; ε, τ) are
continuous functions ofω for all ω ≥ 0, and it holds that

rΨ(0; ϑ; θ; ε, τ) = ‖R̄(0; ϑ)‖−1
2 , ρ0(ϑ). (17)

Since

γΦ(ω; ϑ; 0, 0) = argmin
γ

‖R̄(ω; ϑ) − γĪ(ω; ϑ)‖2 ∀ω > 0

(18)
we get

rΨ(ω; ϑ; θ; ε, τ) ≤ rΦ(ω; ϑ; 0, 0) ∀ω > 0. (19)

From (17), (19) and continuity ofrΨ(ω; ϑ; θ; ε, τ) with respect
to ω for all ω ≥ 0, we get that (15) holds.
Finally, condition 2. directly follows from (12).

Condition 2 of Lemma 3 ensures thatρΨ(ϑ; θ; ε, τ) provides
a quite good approximation ofρ(ϑ) in some neighborhood of
θ for sufficiently small values ofε and τ . Moreover, it turns
out that the maximization ofρΨ(ϑ; θ; ε, τ) amounts to solving
a GEVP.
Consider the rational matrix

T̄ (s; ϑ; θ; ρ; ε, τ) = Ψ(s; ϑ; θ; ε, τ)

[

In×n ρḠ(s; ϑ)
ρḠ′(s; ϑ) 1

]

.

(20)
It turns out thatT̄ (s; ϑ; θ; ρ; ε, τ) depends affinely onϑ for
fixed ρ. In particular, the poles of̄T (s; ϑ; θ; ρ; ε, τ) do not
depend onϑ. This observation suggests that a canonical
controllable state space realization ofT̄ (s; ϑ; θ; ρ; ε, τ) has the
form

[A(θ; ε, τ),B,C(ϑ; θ; ρ; ε, τ),D(ϑ; θ; ρ; ε, τ)] (21)

whereC(ϑ; θ; ρ; ε, τ) andD(ϑ; θ; ρ; ε, τ) are of the form

C(ϑ; θ; ρ; ε, τ) = C0(ϑ; θ; ε, τ) + ρCρ(ϑ; θ; ε, τ)
D(ϑ; θ; ρ; ε, τ) = D0(ϑ; θ; ε, τ) + ρDρ(ϑ; θ; ε, τ).

(22)

Obviously, onceθ is given, the matricesA(θ; ε, τ) and B

and the affine functions ofϑ C0(ϑ; θ; ε, τ), Cρ(ϑ; θ; ε, τ),
D0(ϑ; θ; ε, τ), Dρ(ϑ; θ; ε, τ) can be computed explicitly.
The following result provides the sought maximization of
ρΨ(ϑ; θ; ε, τ) with respect toϑ ∈ Θθ ∩ Θ by means of the
solution of a GEVP.

Theorem 2:Let θ ∈ Θstab ∩ Θ. Then,

max
ϑ∈Θθ∩Θ

ρΨ(ϑ; θ; ε, τ) = min
µ,X,ϑ

µ (23)

s.t.
B(X, ϑ; θ; ε, τ) > 0
µB(X, ϑ; θ; ε, τ) −A(X, ϑ; θ; ε, τ) > 0
X = X′ > 0

(24)

and Qj(ϑ) > 0 ; j = 1, . . . , k (25)
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where

B(X, ϑ; θ; ε, τ ) =

−

»

A
′(θ; ε, τ )X + XA(θ; ε, τ ) XB − C

′

0(ϑ; θ; ε, τ )
B

′
X −C0(ϑ; θ; ε, τ ) −D0(ϑ; θ; ε, τ ) − D

′

0(ϑ; θ; ε, τ )

–

(26)
A(X, ϑ; θ; ε, τ ) =
»

0 −C
′

ρ(ϑ; θ; ε, τ )
−Cρ(ϑ; θ; ε, τ ) −Dρ(ϑ; θ; ε, τ ) − D

′

ρ(ϑ; θ; ε, τ )

–

(27)

Proof: We first prove that

max
ϑ∈Θθ

ρΨ(ϑ; θ; ε, τ) = max
ρ,ϑ

ρ (28)

s.t. T̄ (s; ϑ; θ; ρ; ε, τ) in (20) is SPR.

Indeed, for anyρ > 0 and anyϑ ∈ Θθ, by (13)-(14) it turns
out thatρ < ρΨ(ϑ; θ; ε, τ) if and only if

‖R̄(ω; ϑ) − γΨ(ω; ϑ; θ; ε, τ)Ī(ω; ϑ)‖2 <
1

ρ
∀ω ≥ 0

which by strict positive realness ofΨ(s; ϑ; θ; ε, τ) is equivalent
to

Re[Ψ(jω; ϑ; θ; ε, τ)]
−‖Re[ρḠ(jω; ϑ)Ψ(jω; ϑ; θ; ε, τ)]‖2 > 0 ∀ω ≥ 0.

(29)

In turn, by a standard Schur complement argument on the
matrix function Re[T̄ (jω; ϑ; θ; ρ; ε, τ)] it follows that (29)
holds if and only ifT̄ (s; ϑ; θ; ρ; ε, τ) is SPR.
By the Kalman-Yakubovich-Popov Lemma, strict positive re-
alness ofT̄ (s; ϑ; θ; ρ; ε, τ) for givenρ > 0 is equivalent to the
feasibility of the LMI
»

A
′(θ; ε, τ )X + XA(θ; ε, τ ) XB − C

′(ϑ; θ; ρ; ε, τ )
B

′
X −C(ϑ; θ; ρ; ε, τ ) −D(ϑ; θ; ρ; ε, τ ) − D

′(ϑ; θ; ρ; ε, τ )

–

< 0
X = X

′ > 0
(30)

In turn, by (22),(26),(27), and takingµ = ρ−1, the latter
condition can be rewritten as the second and third of (24).
Moreover, the first of (24) is equivalent to strict positive
realness ofT̄ (s; ϑ; θ; ρ; ε, τ) for ρ = 0, i.e., strict positive
realness ofΨ(s; ϑ; θ; ε, τ) (see (20)), and hence it holds for
all ϑ ∈ Θθ. Finally, the set of additional constraints (25) force
ϑ to belong toΘ. Therefore, the maximization ofρΨ(ϑ; θ; ε, τ)
overΘθ ∩ Θ amounts to solving the GEVP (23),(24),(25).

Remark 4:From the proof of the above theorem, it is
readily checked that for givenρ > 0, the solution of the
LMI feasibility problem (30) with the additional condition
(25) is equivalent to the existence ofϑ ∈ Θθ ∩ Θ such that
ρΨ(ϑ; θ; ε, τ) > ρ.

Remark 5:Condition 2 of Lemma 3 implies that for any
θ ∈ Θstab ∩ Θ the value ofρΦ(θ; ε, τ) can be computed
by maximizingρ such that the LMI (30) withϑ = θ holds
for some X = X′ > 0. According to Theorem 1, for
sufficiently smallε and τ , the solution of this LMI problem
also provides an approximation from below of the parametric
stability marginρ(θ).
It is worth noting that several iterative/heuristic algorithms can
be devised to achieve local maximization ofρ(ϑ) based on the
computation of the lower boundsρΨ(ϑ; θ; ε, τ) for different
values ofθ. One possible idea goes as follows: start at some
θ ∈ Θstab ∩ Θ, and pick a valueρ > ρΦ(θ; ε, τ). Then,
according to Theorem 2 and Remark 4, find, if possible, some

valueϑf ∈ Θ of ϑ ensuring thatρΨ(ϑf ; θ; ε, τ) > ρ. If such
ϑf exists, then by Lemma 3ϑf ∈ Θstab ∩Θ andρ is a lower
bound forρΦ(ϑf ; ε, τ). If possible, repeat the procedure with
θ equal to the valueϑf previously found and a larger value
of ρ, otherwise try with a smallerρ, until some optimality
criterion is met.
Due to space limitations, we omit the details of the algorithm
sketched above. For a comprehensive description and some
application examples we refer the reader to [21].

IV. CONCLUSION

In the present paper the problem of maximizing the reall2
parametric stability margin via the design of restricted com-
plexity controllers (RCSMM problem) has been addressed.
The class of SISO uncertain plants with rank one parametric
perturbations and a controller family characterized by transfer
functions of fixed degree, which depend affinely on a tunable
parameter vector, have been considered.
The main contribution of the paper is the development of a
lower bound of the parametric stability margin, which pro-
vides a locally optimal approximation in some neighborhood
of any given stabilizing controller, and whose maximization
is performed via the solution of a Generalized Eigenvalue
Problem (GEVP). It is believed that the lower bound can be
fruitfully exploited to devise LMI-based algorithms to solve
the RCSMM problem. The development of efficient optimiza-
tion procedures based on the proposed characterization is the
subject of current research.

V. A PPENDIX

Proof of Theorem 1: Condition 1. follows from [15] where
it is shown (see proof of Theorem 2) thatΦ(s; ϑ; ε, τ) is SPR
for sufficiently smallε and τ . More specifically, it is shown
that Φ(s; ϑ; 0, 0) is positive real andε and τ are introduced
to ensure thatΦ(s; ϑ; ε, τ) is SPR. In particular,ε takes into
account the presence of a singularity ats = 0 of Π(s; ϑ) in (8)
whenqϑ is odd, whileτ is for makingΦ(s; ϑ; ε, τ) biproper.
Let us now consider condition 2. For anyϑ ∈ Θstab, it can
be shown (see Lemma 5, Lemma 6, and eq. (23) in [15]) that

γΦ(ω; ϑ; 0, 0) =
R̄′(ω; ϑ)Ī(ω; ϑ)

‖Ī(ω; ϑ)‖2
2

∀ω /∈ Ωϑ.

Hence (see Lemma 2 in [15] and (11)), under the assumption
Ωϑ = {0}, and taking into account that the degree of the
closed loop characteristic polynomial is invariant with respect
to δ, the parametric stability marginρ(ϑ) is given by

ρ(ϑ) = min{ρ0(ϑ), ρ̂(ϑ)}

where
ρ0(ϑ) = ‖R̄(0; ϑ)‖−1

2

and
ρ̂(ϑ) = inf

ω>0
rΦ(ω; ϑ; 0, 0).

Let us consider the expression‖R̄(ω; ϑ)−γĪ(ω; ϑ)‖2 for γ ∈
R. It reduces to‖R̄(0; ϑ)‖2 for ω = 0, while for anyω > 0 its
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minimum with respect toγ is achieved forγ = γΦ(ω; ϑ; 0, 0).
According to (11), this implies

rΦ(0; ϑ; ε, τ) = ρ0(ϑ) ∀ε ≥ 0, τ ≥ 0 (31)

and

rΦ(ω; ϑ; ε, τ) ≤ rΦ(ω; ϑ; 0, 0) ∀ω > 0, ε > 0, τ > 0

and hence the second inequality in (9) is proven.
To complete the proof, we need to show that for anyρ < ρ(ϑ)
there existε, τ > 0 such that

ρ < inf
ω≥0

rΦ(ω; ϑ; ε, τ)

which, taking (31) into account, reduces to

ρ < rΦ(ω; ϑ; ε, τ) ∀ω > 0. (32)

First we note that there exist̂ε > 0 and τ̂ > 0 such that
Φ(s; ϑ; ε, τ) is a SPR rational function with relative degree
zero for all 0 < ε ≤ ε̂, 0 < τ ≤ τ̂ and henceγΦ(ω; ϑ; ε, τ)
satisfies

lim
ω→0

γΦ(ω; ϑ; ε, τ) = 0, lim
ω→+∞

γΦ(ω; ϑ; ε, τ) = 0

for all 0 < ε ≤ ε̂, 0 < τ ≤ τ̂ . Moreover,Ḡ(s; ϑ) is strictly
proper and hence

lim
ω→+∞

R̄(ω; ϑ) = 0, lim
ω→+∞

Ī(ω; ϑ) = 0.

Therefore, for any givenρ < ρ(ϑ) there exist0 < ω < ω and
arbitrarily smallε̄ > 0, τ̄ > 0 such that

ρ < rΦ(ω; ϑ; ε̄, τ̄) ∀ω ≥ ω
ρ < rΦ(ω; ϑ; ε̄, τ̄ ) ∀ 0 < ω ≤ ω,

where the latter also follows from the fact that

lim
ω→0

‖R̄(ω; ϑ)‖2 = ‖R̄(0; ϑ)‖2 =
1

ρ0(ϑ)
≤

1

ρ
.

Now, it is not difficult to show thatγΦ(ω; ϑ; ε, τ) converges
uniformly to γΦ(ω; ϑ; 0, 0) for (ε, τ) → (0, 0) in any compact
subset ofω > 0. Then, for anyρ < ρ(ϑ) there existε̃, τ̃ > 0
such that, for all0 ≤ ε ≤ ε̃, 0 ≤ τ ≤ τ̃ ,

ρ ≤ inf
ω∈[ω,ω]

rΦ(ω; ϑ; ε, τ) ≤ inf
ω∈[ω,ω]

rΦ(ω; ϑ; 0, 0).

Finally, from the observation that̄ε andτ̄ are arbitrarily small,
it follows that ε < min{ε̄, ε̂, ε̃} and τ < min{τ̄ , τ̂ , τ̃} exist
such that (32) holds, thus concluding the proof.
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