A convex lower bound for the real I, The above considerations naturally lead to the introdactio
parametric stability margin of linear control of the restricted complexity stability margin maximizatio

systems with restricted complexity controllers (RCSMM) problem, which amounts to maximizing the
parametric stability margin of a family of SISO uncertain

plants with rank one real perturbations over a given class of

controllers. Such a class of restricted complexity cofdrel

is characterized by fixed order rational transfer functions
Abstract— In this paper the problem of restricted complexity with coefficients depending affinely on some free design

stability margin maximization (RCSMM) for single-input si ngle- parameters.

Ut (SIS0 plats afeced by rank one 2l PEUDANOT  pecpite s simple_formulation, the RCSMM_problem
parametric stability margin over an assigned class of resicted discloses several difficulties. In particular, the solntaf this
complexity controllers, which are described by rational transfer problem implicitly calls for an efficient characterizatiohthe
functions of fixed order with coefficients depending affinelyon  restricted complexity controllers which stabilize the rioat
some free parameters. It is shown that the RCSMM problem, ant of the family. This is a very difficult task and few retsul
which is nonconvex in general, can be approached by means Ofhave been obtained so far (see [7],[11] for the PID case}. It i
convex optimization methods. Specifically, a lower bound ofthe . ' -
stability margin, whose maximization can be accomplished im IS0 to remark that in general the RCSMM problem cannot be
Linear Matrix Inequality (LMI) techniques, is developed. solved directly by means of convex optimization techniques
because of the restricted complexity condition imposed on
the controller class.
. INTRODUCTION In this paper we extend in several respects the preliminary
The parametric stability margin is a typical measureesults reported in [12],[13],[14] in order to relax the &bo
of the robustness of feedback control systems subject difficulties. A new characterization of the real parametric
parametric plant uncertainty. In particular, the stapilitstability margin pertaining to a given stabilizing conteol
margin maximization (SMM) problem, i.e., the design obf the restricted complexity class is given. More specifical
controllers maximizing the parametric stability margirash on the basis of previous results on the design of filters
received considerable attention in the literature (se€dip ensuring robust strict positive realness for affine farsilad
comprehensive reference on this problem). polynomials [15], an SPR rational function is associated to
The most general result is given in [2] and it concerns treach stabilizing controller. Such a characterization raake
class of uncertain systems with rank one real perturbatiop®ssible to compute a suitable lower bound of the stability
which includes single-input single-output (SISO) systensargin pertaining to each stabilizing controller. In peutar,
with transfer function coefficients depending affinely or ththe maximization of this lower bound, which provides a
uncertain parameters. In that paper, Rantzer and Megretéically optimal approximation of the stability margin inrse
exploiting the link between robust stability and robustcstr neighborhood of the given stabilizing controller, amoutats
positive realness, showed that the optimization problesolving a Generalized Eigenvalue Problem (GEVP) [16].
can be made convex provided that a suitable controller
parameterization is employed. Notation R": real n-space;y € R™: vector of R"; v’: trans-
Despite this remarkable result, some issues still deserbet pose ofv; ||v||2: > norm ofv; A € R™™™: realn x m matrix;
investigated in order to devise satisfactory design temlnes. A > 0: matrix A is positive definite;C: the complex plane;
In particular, since the optimization problem in [2] is irifen s € C: complex number; Rg|, Im[s]: real and imaginary parts
dimensional, suboptimal solutions must be looked for tgtou of s; 7(s): a polynomial in the complex variable 97: degree
finite dimensional convex programming [3],[4]. Hence, af a polynomialn(s); P(s): rational function ofs; M(s):
suitable structure for the approximating solution must b@ational function vector/matrix.
found in order to tackle the computational burden and the
complexity of the controller [2],[5]. [l. PROBLEM FORMULATION AND PRELIMINARIES
It is also important to recall that, in the majority of praeli  consider the following class of uncertain SISO plants
applications, it is often mandatory to employ controlleighw =
a prescribed structure, such as PID or lead-lag compessator  p _ {P(s-é) _ Bo(s) +6 1?(5) N Rn} 1)
[6]. In this respect, it is worth to remark that a renewed ’ Ap(s) + 8" A(s)
interest in the synthesis of low-order controllers, maindsed where B(s) = [Bi(s) ... Bu(s)], A(s) = [A1(s) ... An(s)]',

on robust parametric control techniques, has been obseryed_ [6,...6, is the uncertain parameter vector and
= e O

recently [7],[8],[9],[1.0]. In particular, in [10], an LMbased By(s), Ai(s), i = 0,...,n are given polynomials. In the
method for the dt_=,'5|gn of fixed o_rder contrpllers based on @@quel the following simplifying assumption on the degrée o
inner approximation of the stability domain of polynomlal§he polynomials involved in (1) will be enforced.

via strictly positive real (SPR) conditions is derived. Assumption 1:(Plant degree constraint)
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¢’ beingQ;(¥), j =1,...,k symmetric matrices whose entries
L depend affinely ond. The choice of the controller clags
_ in (2) is motivated mainly by practical reasons, since many
G(s) widely used structures such as PID or lag-lead can be seen

as members of such a class. The choice of the structure of
the admissible parameter g8tis motivated by the fact that
Fig. 1. Closed loopL.F"T" representation. this structure enters naturally into LMI problems and iseabl
to model several useful constraints on the controller,, e.g.
coefficient positivity.

We refer toC)y as the controller with transfer functiai(s; ).

In particular, without loss of generality/, is assumed to be

Hereafter, we denote by’s € P the plant with transfer
function P(s;d). In particular, P, will be referred to as the
nominal plantof the family. We denote b the set of g
controllerg stabilizingP, y ¥o a stabilizing controller as stated next.
Consider the feedback interconnection of the uncertaintpl%'A‘S'Sumpt'f)dn 2:Co sj[ablhzehsl_?o, I'.'(.e" Cohe f(il ing dii
Ps and a controlleC’ € Sy with transfer function S0, to avol excessive tec nica |t|_es,t e following daion
on the polynomials involved in (2) is enforced.
Assumption 3:(Controller degree constraint)

ONyg < 0Dy, ON; <ONy, 0D; <0Dy, i=1,...,m.

where N(s) and D(s) are given polynomials. A standard
() (s) g poly he above assumption ensures t6ds; ¢) is proper and that

representation of the resulting feedback control loop can

obtained via a linear fractional transformation (LFT) ireth Its order is invariant ‘_A_"th respgct 0. L
form reported in Fig. 1, where The problem of stability margin maximization over the class

of restricted complexity controlleis can be stated as follows,

G(s) = — D(s)A(s) + N(s)B(s) . where p(J) denotes the parametric stability margin achieved
D(s)Ao(s) + N(s)Bo(s) by Cy according to Definition 1, i.e0(9) = pc,
Since the perturbatiob is a vector (i.e.w is a scalar), this ~RCSMM problemGiven the plant familyP and the class of
representation is usua”y said to benk one restricted Complexity controllers find the parameten$* € ©

We recall the notion of red) parametric Stabi"ty margin []_] such that the COﬂtrO”@ﬂ* € C achieves the maximum of the
Definition 1: Given the uncertain plant clag? and a con- closed loop stability margin over the claSsi.e.,

troller C' € Sy, the reall, parametric stability margimc

pertaining to such controller is defined as the maximalich

that the closed loop is stable for |2 < p.

We have the following well-known expression fpg. II. M AIN RESULTS
Lemma 1l:Let P andC € Sy be given. Then,

pC,. = sup p(V). (3)
YeO

Several difficulties arise in solving the RCSMM problem.

61— 8GGw) ic(): Sl;p p> 0 Vo : || In particular, in view of Definition 1, it is to observe tha)
S.t. — Jw , w > : 2 < p. i i i )

One of the most investigated robust control problems L%well defined only fory belonging to the se...,N© where
the parametric stability margin maximization (SMM) which Oustap = {9 €R™ : Cy € Sy}.

amounts to finding the controller which maximizeg over

the class of stabilizing controllets, [1],[2]. Therefore, solving (3) implicitly calls for an efficient ctae-

Despite the fundamental results given in [2], where the SMigrization of©..,. Unfortunately, this is a very difficult task
problem is shown to be convex with respect to a suitabf@d few results have been presented so far in the literagaes (
parameterization of robustly stabilizing controllerse thctual €-9., [7],[11]). It is also to observe that the RCSMM problem
computation of the optimal controller shows practical diffi cannot be solved in general via convex techniques because of
ties, especially when constraints on the controller stmecare the restricted complexity condition on the controller.ded, it
imposed, a very common situation in practical applicationsis not difficult to find examples which display local maxima.
Motivated by the above consideration, we consider the SMN this paper, the RCSMM problem is approached in order
problem when the controller is assumed to have a givéh relax the above difficulties. First, in Subsection IlI-A a
structure. In particular, we introduce the following class New characterization of the parametric stability margia)

restricted complexity controllers pertaining toCy, ¥ € O4qp IS developed. More specifically,
exploiting earlier results on Strict Positive RealnessRpP

. ! N
C— {C(s; 9) = N(s;9) _ No(s) + 79/]Y(S) 9 @} [15], a suitable SPR rational function is associated to €agh
D(s;9)  Do(s) +9"D(s) ¥ € Oqap, thus providing an implicit parameterization of the

2 . L
= _ , — 7 setO4qp. Subsequently, on the basis of such characterization,
\[/ge(;e) ngs)(s)], _N D[{X;)(S)@;--i\fm((f)] ’ mDSr)e ivgn a lower bound ofp(¥) is developed in Subection IlI-B. In
pollyno-rr.]i-alsmﬁ o [19“ 119 ]’, c I&m i7s- .al 7free con?roller particular, this bound provides a locally optimal approation
’ - 1---Um

of p(¥) in some neighborhood of a given controller parameter
vector, and its maximization can be accomplished via LMI
O={deR™ : Qi) >0; j=1,...,k} techniques.

parameter vecto® C R™ is of the form



A. Characterization of the red}, parametric stability margin ~ Theorem 1:Let ¥ € O, and supposey = {0}.

The stability marginp(¢) pertaining toCy, 9 € Ogap, Introduce the rational function

can be computed in accordance with Lemma 1 of¢e) is 11, (s;9) (1+ 75)?M2=9  fo1 even gy
replaced with Mo (s; )
~ D(s;9)A(s) + N(s;9)B(s P(s;se,7) = I+ (s:
G(ss9) = — DDA + N(si0)Bs) (i) e
D(s;9)Ao(s) + N(s;9)Bo(s) o (s; 1) for odd gy

. &2
However, we look for a special characterizatiorp6f) which (L+7s)
is obtained by associating t6s a suitable SPR rational wheres and T are positive scalars, and
function. To proceed, let us rewritg(s; ) as &1 = senfap(—1)@ /2]

T K G ™ (s:9) ]’ = oI, — 911, — _1)(@e—1)/2
G(s;09) = om D) m(e) (4) 13 2 1 — sgnfay(—1) ],

) ) ) “beingIl; (s;9), Ha(s; 1), ag, go as in (8). Then, for alp such
where, according to the expressions in (2), the polynomigjs;tg p < p(9), there exist > 0 andr > 0 such that

mi(s;9),4=0,...,n are given by 1) ®(s; 0;e,7) is SPR
mi(s19) = 2) The following inequality holds
Do (s)Ai(s) + No(s)Bi(s) + 7'[D(s) Ai(s) + N(S)Bz'(s)](-s) p < pa(¥;e,7) < p(9) 9)
Note that, since”y is assumed to stabilize the nominal plantwhere
the polynomialm(s;¥) is Hurwitz. From (4) it follows that po(V;e,7) = inf re(w;d;e,7) (10)
the characteristic polynomial of the closed loop system has w20
the expression being
" ro(w;v;e,7) = |R(w; ) — ya(w; Ose, 7)I (w3 9)]l31 (11)
m(s;0;9) = mo(s; ) + Zéim(s;ﬁ). (6) d
i=1 an o Im[®(jw; ;e 7)]
It is not difficult to check that Assumption 1 and Assumption Ye(w;vie,7) = Re®(jw;d;e,7)]
3 ensure that the degree of the characteristic polynomial is Proof: See Appendix. u
invariant with respect td and ¢, specificallydr = 9D, + The above Theorem provides a new characterization of
O Ao. the real [, parametric stability marginp(¥) pertaining to
Let us now introduce the two functions a controllerCy, ¥ € Oy The key element is the SPR
- - - - rational function ®(s;d;e,7), which is computed via the
R(w;¥) = RG(jw;¥)] ; I(w;?) = Im[G(jw;I)], polynomial factorization (8) and the appropriate selectid
the parameters and 7. In this respect, some remarks are in
the related set order.
Qp={w>0 : I(wd) =0} @) Remark 1:The proof of Theorem 1 makes it clear that, for
- ’ ’ sufficiently smalle, 7, ®(s;9;¢,7) is SPR ande (9; €, 7) is
and the polynomial a quite good approximation gf(¢J). By taking into account
n the role ofe (II(s;¥) has a singularity at = 0) and
(s;0) = 321 mo(s;9)mi(—s;90)- (®(s;9;¢,0) may not be biproper), it turns out that(resp.
[mo(=s; 9)mi(s;9) — mo(s; )i (=53 0)] - 1/7) should be chosen at least one decade smaller (resp. larger)

than all the singularities ofI; (s; ¢) andIIa(s; ).

It can be verified that for eacl?, any nonzero frequency ) =
Remark 2:1t is not difficult to show that the order of

w € Qg must be a common root of polynomials inw, , .
which implies that the existence of such is not generic £(s:v:€,7) is related to that of the plant clags in (1) and
especially for larger. Therefore, the assumptiady, = {0} the controller clas€ in (2). Indeed, exploiting (5), (6), and

will be enforced in the sequel, as it holds almost everywhef®); it turns out that the order @b(s; J; , 7) is no larger than

in the controller parameter space. Under this assumptton 2§?4o +9Do) (see [15]).

can be shown thall(s; 9) is such thatll(jw; ) # 0 for all Remark 3:The assumptiori2; = {0} ensures continuity
w > 0 and therefore the following factorization holds (see als?f the reall> parametric stability margip(?) [1],[17]. The
Lemma 7 in [15]): V|olat|o_n of this assumption, which can be readily _detect_ed
according to the comments related to (7)-(8), makes it ptessi
II(s;0) = ays? Iy (s;9)a(—s;9) (8) that the stability margirp(+¥) is discontinuous at some point

¥ = ¥4. Such a discontinuity issue has been investigated
whereay is a real constanty > 1 is an integer andll; (s;J), in several papers and regularity results have been derived
II5(s; ¥) are uniquely determined monic Hurwitz polynomials[.lg], [19], [20], [1],[17], also exploiting the link with t@
The following result provides the sought characterizattbn computation of the structured singular valuefor rank-one
p(0). uncertainty [18], [19], [20]. Finally, we note that an exgse®n



for an SPR®(s;¥;e,7) can be obtained also in the non- Lemma 3:Let § € O,p. Then, the following properties
generic case of2y # {0}. hold for the functionpy (¢; 0; ¢, 7).
1) pw(9;0;¢,7) is a lower bound op(¥)), i.e.,

B. An LMI lower bound to the real, parametric stability pu(9;0;2,7) < p(¥9) VI € Op. (15)
margin N

The characterization in Subsection IlI-A provides an im- 2) pu(V;0;e,7) is equal tope(J;e, 7) for & =0, i.e.,

plicit parameterization 0B ,,. However, the maximization pw(0;0;e,7) = pa(0;e,7). (16)
of the approximating quantitys (¢; ¢, 7) with respect tog € Proof: Lemma 2 ensures that bath (¢; 0; ¢, 7) andp(¢¥)
Ostqp N O cannot be solved by convex optimization methodsre well defined for any) € ©,. Moreover, observe that, for
directly. In the sequel, a suitable lower boundpdf)), whose fixed 0, ¢, 7, both vy (w;9;0;¢,7) and ry (w;9;0;¢,7) are
maximization can be carried out by means of a standard GE\Bntinuous functions of for all w > 0, and it holds that

is developed. _ 3

To proceed, letd € O, 4 be given, and consider the ru(0;9; 052, 7) = [ R(0; 9) |5 = po(9). (7)
corresponding closed loop nominal characteristic polyiabm Sjnce

mo(s;0) in (6). Let ®(s;0;¢,7) be computed as in Theorem o _

1 for some positives, 7 and consider the rational function Yo (w; ¥;0,0) = arg o [R(w; 9) = yI(w;D)]l2 Yw >0

mo(s; ) (18)
mo(s;0)
which depends affinely ond and obviously satisfies re(w;¥;0;6,7) < 79 (w; 9;0,0) Vw >0. (19)

U(s;0;0;¢e,7) = @(s;0;¢,7). Moreover, sinced(s;0;¢,7) From (17), (19) and continuity ofy (w; 9; 0; ¢, 7) with respect
is SPR, it follows that als@’(s;9;0;¢,7) is SPR for alld in  to w for all w > 0, we get that (15) holds.

U(s;%;0;e,7) = D(s;0;e,7)

(12) we get

some neighborhood @t In this respect, we have the followingFinally, condition 2. directly follows from (12). [ ]

result. Condition 2 of Lemma 3 ensures thag(; 0; e, 7) provides
Lemma 2:Let ©p = {¥ € © : VY(s;9;0;¢,7) is SPR}.  a quite good approximation ¢f(1J) in some neighborhood of

Then, 0y C Ostqp- 6 for sufficiently small values ot andr. Moreover, it turns

Proof: We first observe that, sinc&(s;1;0;¢,7) de- out that the maximization gfy (v; 0; ¢, 7) amounts to solving
pends affinely onJ, Oy is a convex set. Since(s;0;e,7) is a GEVP.
SPR, from (12) we have that for any € ©y the following Consider the rational matrix
inequality holds

|arg[mo (jw; V)] — arglmo (jw; 0)]] = pG'(s;9) 1

T(s;0;0;p;e,7) = U(s;9;0;¢,7) Inxn pG(S;ﬂ)J .
larg[ U (jw; ;05 e, 7)] — arg[®(jw; O;¢,7)]| < 7, ¥V w > 0. (20)

It turns out thatT'(s; 9; 0; p; e, 7) depends affinely o for
Recalling that the degree afy(s;0) is invariant with respect fixed p. In particular, the poles of (s;9;0; p;e,7) do not

to o, from the Bounded Phase Lemma [1] we have th@epend ond. This observation suggests that a canonical
all the polynomials of the following one-parameter familontrollable state space realizationTofs; 9; 6; p; £, 7) has the
{(1 = Nmo(s;0) + Amo(s;9), A € [0,1]} have the same form

stability properties. Hence, the proof follows from Huraviess

of m(s;6) and convexity of©,. [} [A(0;¢,7), B, C(3;0; p;e,7), D(9;0; ps e, 7)] (21)

The above lemma ensures that, for ahy Oy, the rational \whereC(9;0; p;, 7) andD(¥;0; p; e, 7) are of the form

function C(9: 6: pi e, 7) = Co(0; 65, 7) + pC, (9; 6 £, 7)
i0;p56,7) = Co(V; 056, 7) + pCp(0; 056, T
= Im[¥(jw; 3; 0; ¢, 7)) D(9;0; p;e,7) = Do(¥;0;¢,7) + pD,(9; 05, 7).
RV (jw; ¥;0;¢,7)] ) o .
, _ Obviously, oncef is given, the matricesA(6;¢,7) and B
Itf] b?unq[_ed fofrﬁalku > 0. As a consequence, we can deflngmd the affine functions off Co(d;0;¢,7), C,(J;0:¢,7),
€ function © Do(d; 0;¢,7), D,(9;0;,7) can be computed explicitly.
pu(9;0;e,7) = inf rg(w;;0;¢,7) (13) The following result provides the sought maximization of
w20 pw(9;6;¢,7) with respect tod € ©y N © by means of the
where solution of a GEVP.
Theorem 2:Let 0 € O, N O. Then,

(22)

Yo (w; ;05 e, 7T)

ro(w;¥;0;e,7) = | R(w; 9) — yo (w95 05, 7) I (w; 9)5

(14) plax pu(0;0;e,7) = min u (23)
Note that, according to (12), the dependencepfy; 0; ¢, )
on e andr is inherited by the computation df(s;0;¢,7) as B(X,9;0;e,7) >0
in Theorem 1 (see also Remark 1). The result that follows St uB(X, 9;0;e,7) — A(X, 5 60;¢,7) > 0 (24)
relates py (9; 6; ¢, 7) with the stability marginp(v) and its X=X">0

approximating quantitye (¢; &, 7). and Q;(W) >0 ; j=1,....k (25)



where valued; € © of ¥ ensuring thaipg (9;0;e,7) > p. If such

B(X,9;0;¢,7) = ¥ exists, then by Lemma 8¢ € O44,N O andp is a lower
A'(O;e,7)X + XA(0;e,7) XB— CH(96;e,7) bound forps(¥y; ¢, 7). If possible, repeat the procedure with
n { B'X — Co(9;0;e,7) —Do(9;0;¢,7) — D,(I; 056, 7) J ¢ equal to the valuel; previously found and a larger value
(26)  of p, otherwise try with a smallep, until some optimality

AX,0;05e,7) = criterion is met
0 —C,(0;0;¢, 7T y

—C,(9;0;e,7) —D,(9;0;e,7) — D;(Zg;o;aﬂ.) } Due to space limitations, we omit the details of the alganith
Proof: We first prove that sketched above. For a comprehensive description and some
application examples we refer the reader to [21].

@7

9; 6, = 28
gg;pw( 10;e,7) ma p (28)
s.t. T(s;9;0;p;e,7) in (20) is SPR. IV. CoNCLUSION

In the present paper the problem of maximizing the fgal
parametric stability margin via the design of restricteaneo
plexity controllers (RCSMM problem) has been addressed.
The class of SISO uncertain plants with rank one parametric
perturbations and a controller family characterized bygfer
functions of fixed degree, which depend affinely on a tunable
parameter vector, have been considered.

, The main contribution of the paper is the development of a
ReW (juw; 19_?9?5’7)], (29) lower bound of the parametric stability margin, which pro-
—IRelpG(jw; V) (jw; ¥; 058, 7)]||2 > 0 Vw = 0. vides a locally optimal approximation in some neighborhood

In turn, by a standard Schur complement argument on tAgany given stabilizing controller, and whose maximizatio

matrix function RET(jw;¥;0;p;e,7)] it follows that (29) is performed via the solution of a Generalized Eigenvalue

holds if and only if7'(s;; 0; p;e,7) is SPR. N Problem (GEVP). It is believed that the lower bound can be

By the Kalman-Yakubovich-Popov Lemma, strict positive regitfully exploited to devise LMI-based algorithms to sel

?Ine_ss_ off'(s; 0; 0; p: , ) for givenp > 0 is equivalent to the o pegpm problem. The development of efficient optimiza-

easibility of the LMI . A

tion procedures based on the proposed characterizatite is t

Indeed, for anyp > 0 and anyy € Oy, by (13)-(14) it turns
out thatp < py (9;6;¢,7) if and only if

_ . 1
|R(w; ) — yo(w;9;0;¢,7)(w;9)]||2 < p Yw >0

which by strict positive realness &f(s; ¥; 0; ¢, 7) is equivalent
to

A'(0;e,7)X +XA(0;e,7)  XB - C'(3;0;p;¢,7) subject of current research.
B'X — C(9;0;p;e,7) —D(V;0;p;e,7) — D'(9;0; pse, 7)
<0
X=X">0 V. APPENDIX
(30)

In turn, by (22),(26),(27), and taking — p~1, the latter Proof of Theorem 1Condition 1. follows from [15] where
condition can be rewritten as the second and third of (2 5).'5 Shﬁ‘?"Y” (tTee prcnof of ;jl'hetl)vrlem 2) t@]f.sﬂi’l;e’{). IS ﬁPR
Moreover, the first of (24) is equivalent to strict positiv r sufficiently smafle andr. Viore speciicaily, It 1S Snown

that ®(s;;0,0) is positive real and and r are introduced

realness ofl'(s;9;0; p;e,7) for p = 0, i.e., strict positive . . .
realness ofl(s: 9; 6: c, 7) (see (20)), and hence it holds forto ensure tha®(s;¥;¢,7) is SPR. In particulars takes into

all 9 € ©,. Finally, the set of additional constraints (25) forc@SCOUNt the presence of a singularity:at 0 of I(s; ) in (8)
¥ to belong tod. Therefore, the maximization fy (9; 6; =, 7) whengy is odd, whiler is for making&(s; 9; , ) biproper.
over©, N © amounts to solving the GEVP (23),(24),(25. Let us now consider condition 2. For amye @smb,_ it can
Remark 4:From the proof of the above theorem, it isbe shown (see Lemma 5, Lemma 6, and eq. (23) in [15]) that
readily checked that for givep > 0, the solution of the o R’(w;ﬂ)]—(w;ﬂ)
LMI feasibility problem (30) with the additional condition Yo (w; U50,0) = T(w; 0|2
(25) is equivalent to the existence dfe ©y N © such that . .
pu(9;0;2,7) > p. Hence (see Lemma 2 in [15] and (11)), under the assumption

Remark 5:Condition 2 of Lemma 3 implies that for any$?» = {0}, and taking into account that the degree of the
0 € Oy N O the value ofpe(f;c,7) can be computed closed loop characteristic polynomial is invariant witlspect
by maximizingp such that the LMI (30) withy = ¢ holds 10 4, the parametric stability margin(?) is given by
for someX = X’ > 0. According to Theorem 1, for . .

’ ) = ), p(V

sufficiently smalle and 7, the solution of this LMI problem p(V) = min{po(¥), p(V)}
also provides an approximation from below of the parametrighere
stgbility marg_inp(ﬁ). _ _ o _ po(9) = || R(0;9)]15 "
It is worth noting that several iterative/heuristic algbms can
be devised to achieve local maximizationsgf) based on the and
computation of the lower boundsy (J; 6;¢,7) for different p(9) = inf rg(w;¥;0,0).
values off. One possible idea goes as follows: start at some w=0 B B
0 € Ouap N O, and pick a valuep > pa(f;e,7). Then, Let us consider the expressigi(w; V) —vI(w;I)||2 for v €
according to Theorem 2 and Remark 4, find, if possible, sorffe It reduces td| R(0; )|z for w = 0, while for anyw > 0 its

Yw ¢ Qﬁ.



minimum with respect tey is achieved fory = v¢(w; ; 0, 0).
According to (11), this implies

re(0;9;e,7) = po(¥) Ve>0,7>0 (31)

and
ro(w;%e,7) < re(w;¥;0,0) VYw >0,e >0,7>0

and hence the second inequality in (9) is proven.
To complete the proof, we need to show that for any p(9)
there existz, 7 > 0 such that

p < Ligforq)(w;ﬂ;s,r)
which, taking (31) into account, reduces to
Yw > 0.

p <re(w;d e, ) (32)

First we note that there exigt > 0 and 7 > 0 such that

(6]
(7]
(8]
El

[10]

[11]

[12]

[13]

®(s;9;¢,7) is a SPR rational function with relative degre?m]

zero for all0 < e < ¢, 0 < 7 < 7 and henceyg (w; ¥; ¢, 1)
satisfies

HH%)’Y@(LU;Q%E,T) =0, lim ~g(w;¥e,7) =0

w——+00
forall 0 <e <4, 0< 7 <7 Moreover,G(s;d) is strictly
proper and hence

lim R(w;d) =0,

w— 400

li I(w:¥) = 0.

o, T59)

Therefore, for any givep < p(9) there exist) < w < @ and
arbitrarily smallz > 0, 7 > 0 such that

p<rew;¥eT) Yw>w
p<re(w;¥eT) V0<w<w,
where the latter also follows from the fact that
1 1

lim ||R(w;9)||2 = |R(0;9)||2 = —— < ~.
lim [[R(w; 9)][2 = [|R(0; 9)]|2 0@ =

Now, it is not difficult to show thatys (w; 9;e,7) converges
uniformly to v¢ (w; ¥; 0, 0) for (,7) — (0,0) in any compact

subset ofw > 0. Then, for anyp < p(¥) there existt, 7 > 0
such that, forall0 <e <&, 0 <7 <7,

p< inf re(w;die, 7)<

wE[w,w]

inf r¢(w;d;0,0).

wE[w,w]

Finally, from the observation thatand+ are arbitrarily small,

it follows thate < min{¢,¢,é} andr < min{7, 7,7} exist
such that (32) holds, thus concluding the proof. ]
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