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Abstract

We consider the problem of optimal H2 design of semi-decentralized controllers for a special class of spatially dis-
tributed systems. This class includes spatially invariant and distributed discrete-time systems with an inherent temporal
delay in the interaction of neighboring sites. We consider the problem of optimal design of distributed controllers that have
the same information passing delay structure as the plant. We show how for stable plants, the YJBK parameterization of
such stabilizing controllers yields a convex parameterization for this class. We then show how the optimal H2 problem
can be solved.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We consider spatially distributed systems where all signals are functions of discrete spatial and temporal
indices, e.g. {ui(t)}, where both i and t are integers and we interpret each as the spatial and temporal index,
respectively. The theory of such spatio-temporal systems has been worked out in some detail. We consider
only spatially distributed systems with the additional property that the dynamics are spatially invariant. For
recent work on this class and some of the background for the present work, we refer the reader to [2,4] and
the references therein for H2- and L2-induced norm minimization problems.
One of the major issues in the design of such distributed controllers is the communications requirements

between individual controller sub-systems. One of the applications of this design methodology is to design
controllers for large arrays of micro-electro-mechanical system (MEMS), in which there are potentially tens
of thousands of actuator/sensor and imbedded control sub-systems. For systems of this size and conBguration,
centralized controllers are not an option. It turns out that optimally designed centralized controllers have an

∗ Corresponding author.
E-mail addresses: petros@ktisivios.csl.uiuc.edu (P.G. Voulgaris), giannibi@dii.unisi.it (G. Bianchini), bamieh@engineering.ucsb.edu

(B. Bamieh).
1 Supported by Grant NSF CCR 00-85917 ITR.

0167-6911/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0167-6911(03)00181-6

mailto:petros@ktisivios.csl.uiuc.edu
mailto:giannibi@dii.unisi.it
mailto:bamieh@engineering.ucsb.edu


348 P.G. Voulgaris et al. / Systems & Control Letters 50 (2003) 347–361

inherent localization property which enables them to be implemented using distributed control elements with
limited communication requirements [2,8]. In general, however, the optimal controller does not inherit the
structure of the plant and also it is not clear how a prescribed localization rate can be achieved.
Several researchers have recently been looking at the problem of explicitly imposing a priori constraints

on communication requirements between controller subsystems. Among these are approaches based on linear
matrix inequalities (LMIs) and convex optimization techniques (see [1,3,4] and the references therein) which
provide stability and guaranteed L2 performance levels for systems captured by rational, multidimensional
transfer functions. The same structure of controllers as the plant is imposed and a relaxation is used to obtain
stability and performance conditions via LMIs.
In this paper, we consider the case where the controller is constrained such that information is propagated

at a certain speed between sub-systems, a property we refer to as cone causality. We show that by employing
the standard YJBK parametrization approach (e.g., [9,5]), the constraints on the controller transform to convex
constraints on the Youla parameter, given that the plant has the same cone-causality structure. We then show
how the optimal H2 problem can be solved based on the input–output approach. By doing so, a suitably
relaxed problem is deBned and solved that is of interest on its own right, which also provides the means to
approximate arbitrarily close the optimal cost via Bnite-dimensional problems.

2. Preliminaries

We consider signals that are functions of both discrete time t and discrete space i, and are denoted by
u(i; t) or equivalently ui(t). Systems that act on such signals via convolutions are called spatially invariant
spatio-temporal systems, and are represented by y = Gu, where

yi(t) =
∞∑

j=−∞

∞∑
�=−∞

ĝi−j(t − �)uj(�);

where the function of two indices ĝi(t) represents the spatio-temporal impulse response of G. In general, tem-
poral causality is assumed, and it implies that ĝi(t)=0 for t ¡ 0. It is sometimes helpful to view such systems
as a family (indexed by i) of standard temporal systems {gi}. Each member of this family has a corresponding
�-transform gi(�) =

∑∞
t=0 ĝi(t)�

t , while the overall spatio-temporal transfer functions is given by G(z; �) :=∑
i; t ĝi(t)�

tzi. This spatio-temporal transfer function can also be expressed as G(z; �) =
∑∞

i=−∞ gi(�)zi, or
alternatively, G(z; �) =

∑∞
t=0 Gt(z)�i where Gt(z) =

∑∞
i=−∞ ĝi(t)zi.

It is a standard fact that the transform Y (z; �) of the output y = {yi(t): − ∞6 i6∞; 06 t6∞} of
G to a spatio-temporal input sequence u= {ui(t): −∞6 i6∞; 06 t6∞} with transform U (z; �) relates
simply as Y (z; �)=G(z; �)U (z; �) which is the equivalent of the two-dimensional convolution given as yi(t)=∑j=∞

j=−∞
∑�=t

�=0 ĝi−j(t − �)uj(�).
For the system G, its ‘1 norm is ‖G‖1 :=

∑
i; t |ĝi(t)|¡∞. Note also ‖G‖1 =

∑∞
i=−∞ ‖gi‖1 where

‖gi‖1 =
∑∞

t=0 |ĝi(t)| is the usual temporal ‘1 norm. Similar to the one-dimensional case, the ‘2 norm of
G can be deBned as ‖G‖2 := (

∑
i; t |ĝi(t)|2)1=2 and H2 norm of its transform G(z; �) given as ‖G‖H2 :=

((1=2�)2
∫
06�62�

∫
06!62� |G(ej�; ej!)|2 d! d�)1=2; the isometry ‖G‖H2 =‖G‖2=〈G;G〉1=2 also holds. Note that

‖G‖2 = (
∑∞

i=−∞ ‖gi‖22)1=2 where ‖gi‖2 = (
∑∞

t=0 |ĝi(t)|2)1=2 is the usual temporal ‘2 norm (which is also equal
to the usual H2 norm of the temporal system gi). The system G will be called L2-stable if ‖G‖H∞ :=
ess sup06�¡2�; |�|61|G(ej�; �)|¡∞. This is the kind of stability we consider in this paper, and we refer to
such systems simply as stable. To avoid proliferation of notation, the norm subscripts will be dropped as it
will be clear from the context.
Given such a stable G we can also view it as a bounded linear mapping of ‘2 spatio-temporal input

sequences, or, alternatively via the spatio-temporal transforms, a bounded map of L2 functions. A particular
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factorization that will be useful for our development is G = GinGout where Gin is an isometry on L2 and
Gout is (temporally) causally invertible on L2. It can be easily shown that a particular way to accomplish
this factorization is to perform a family of standard inner–outer factorizations (e.g., [9,5]) of G(z; �) by
viewing it as a temporal system for each (Bxed) z = ej�, i.e., G(ej�; �) = Gin(ej�; �)Gout(ej�; �). Assuming
for technical simplicity that inf �;!|G(ej�; ej!)|¿ 0, we have that by Parseval’s equality, the spatio-temporal
system Gin(ej�; �) is an isometry and Gout(ej�; �) is (temporally) causally invertible. As in the temporal case,
given a G(z; �) we deBne G∼(z; �) := G(z−1; �−1). The isometry of the inner function Gin(ej�; �) then implies
that G∼

in (e
j�; �)Gin(ej�; �) = 1. With some abuse of terminology, we call this factorization of a spatio-temporal

systems G=GinGout an inner–outer factorization. We stress however, that this is not an inner–outer factorization
in the sense used in the mathematical literature on several complex variables, where inner and outer refer to
functions whose zero sets are inside and outside the unit polydisk, respectively. The conditions for this latter
type of inner–outer factorization are much more stringent, and it is known that such factorizations often do
not exist [6].

3. Problem de�nition

Consider the standard conBguration for disturbance attenuation in Fig. 1 where the disturbance w, the
regulated output z, the measurements y and the controls u are spatio-temporal sequences, and, the plant G
and the controller K are spatially and temporally invariant systems.
The particular structure of interest is when in the spatial and temporal transform domain G22, the map from

u to y, is of the form

G22(z; �) =
∞∑

i=−∞
gi(�)zi (1)

with

gi(�) = �|i|g̃i(�);

where, as presented in the previous section, � corresponds to the temporal one-sided transform variable,
z corresponds to the spatial two-sided transform variable; g̃i(�) is a transfer function corresponding to a
temporally causal system. The interpretation of this structure is that the input ui to the ith system gi aMects

Fig. 1. The standard problem.
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the output yj of the jth system gj which is |j − i| spatial locations away with a (time) delay proportional to
their spatial distance |j − i|, i.e., with a delay of |j − i| time steps.
Given such a G22, we are looking for stabilizing controllers with the same structure as G22. Namely, we

want K as

K(z; �) =
∞∑

i=−∞
ki(�)zi (2)

with

ki(�) = �|i|k̃ i(�):

Thus, we are imposing an implicit decentralized structure on K since now the measurements of the jth location
will be made available at the ith station after |j − i| time steps.
The problem of interest is to design such a K which is stabilizing and minimizes the H2 norm of the

closed loop.

4. Problem solution

We consider here only the case where G22 is stable. The following proposition shows that by employing
the Youla parameterization the decentralization constraints on K transform to convex constraints on the Youla
parameter Q.

Proposition 4.1. All stabilizing K with the desired structure are given by

K =−Q(I − G22Q)−1;

with Q stable given by

Q(z; �) =
∞∑

i=−∞
qi(�)zi

and with qi of the form

qi(�) = �|i|q̃i(�);

where q̃i is stable.

Proof. That all stabilizing, possibly without the structure, K are given as K = −Q(I − G22Q)−1 follows by
the same arguments as in the Bnite-dimensional case. In particular, as G22 is stable, it always has a trivial
(right and left) factorization in the ring of stable systems. Hence, by Theorem 12, p. 364 in [9] all stabilizing
K are given by the previous fractional expression.
We will thus prove the structural property of Q only. We view G22 as the following mapping:



...

y−1

y0

y1

...



=



. . .

. . .
. . .

. . .

· · · g1 g0 g−1 · · ·
. . .

. . .
. . .

. . .







...

u−1

u0

u1

...



:
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Grouping together the outputs at each time step 0; 1; 2; : : : as

y(0) =




...

y−1(0)

y0(0)

y1(0)

...



; y(1) =




...

y−1(1)

y0(1)

y1(1)

...



; : : :

and similarly for u we can view y = G22u as a standard matrix


y(0)

y(1)

y(2)

...



=




G0

G1 G0

G2 G1 G0

. . .
. . .

. . .
. . .







u(0)

u(1)

u(2)

...



;

where Gi are band operators. In particular, we have

G0 =



. . .

. . .
. . .

· · · 0 ĝ0(0) 0 · · ·
. . .

. . .
. . .

. . .


 ;

i.e., diagonal,

G1 =



. . .

. . .
. . .

. . .
. . .

. . .

· · · 0 ĝ1(0) ĝ0(1) ĝ1(0) 0 · · ·
. . .

. . .
. . .

. . .
. . .

. . .


 ;

i.e., 3-diagonal, and generalizing, Gi is (2i+1)-diagonal, where ĝi = {ĝi(t)}∞t=0 denotes the pulse response of
the system associated with gi(�). Representing similarly K by

K =



K0

K1 K0

. . .
. . .




it is easy to verify that K is required to have K0 diagonal, K1 3-diagonal; : : : ; Ki (2i + 1)-diagonal, etc. By
considering the parameterization K =−Q(I −G22Q)−1 it is now clear that K has the required structure if and
only if Q has precisely the same structure, namely,

Q =



Q0

Q1 Q0

. . .
. . .




with Qi 2i + 1-diagonal which completes the proof.
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With the above parameterization, the problem of interest becomes

inf
Q

‖H − UQV‖

with

Q(z; �) = Q0(z) + Q1(z)�+ · · · ;
where

Q0(z) = q0;0; Q1(z) = q1;−1z−1 + q1;0 + q1;1z;

Q2(z) = q2;−2z−2 + q2;−1z−1 + q2;0 + q2;1z + q22z2;

· · ·
with qi; j scalars and H , U , V stable maps that depend only on G. Since in this paper we are considering
scalar spatio-temporal transfer functions we further assume that V=I . The idea of the approach is not diMerent
in the case of matrix transfer functions.
Do an inner–outer for U (z; �) Bxing z:

U (z; �) = Uin(z; �)Uout(z; �):

Let

R := UoutQ = R0(z) + R1(z)�+ · · · ;
then

inf
Q

‖H − UQ‖= inf
Q

‖U∼
in H − UoutQ‖= inf

R
‖U∼

in H − R‖:

Let

Uout(z; �) = U0(z) + U1(z)�+ · · · :

It thus becomes a problem of characterizing the decentralization constraint on R. Clearly the problem is convex
but not Bnite dimensional.
Relaxing Q to be in ‘2 (as opposed to H∞), corresponds to a minimum distance problem in ‘2 (or L2)

to a closed subspace (since Uout is a bounded operator with bounded inverse). By the projection theorem
(e.g., [7]), it therefore has always a solution. In the case, where the optimal Q is in ‘2 it can always be
approximated arbitrarily close with a Q in ‘1 (for example, FIR sequences). Thus we consider the problem
with Q∈ ‘2.
Next we consider a relevant relaxation of the original problem that is of interest on its own right in addition

to that it approximates the original problem with arbitrary accuracy. Namely, we require that only the Brst
N coePcients in Q(�; z) = Q0(z) + Q1(z)� + · · · are constrained to correspond to band-operators Qi with
(2i + 1)-diagonal for i = 0; 1; : : : ; N − 1, where N is arbitrary. This equivalently amounts to relaxing the
controller structure in exactly the same manner. The interpretation is that if the spatial distance |i− j| between
location i and j is greater or equal than N the time delay in obtaining measurement yj for the use in control
decision ui at location i is N (i.e., it does not grow indeBnitely.) Of course, if |i− j|¡N the delay is |i− j|
time-steps.
If we denote by  the optimal value of the original problem and  N its relaxation as above it is clear that

 N 6  , i.e.,  N is a lower bound. Since Uout is a bounded operator with bounded inverse, it can be shown
that limN→∞  N =  and hence we can approach arbitrarily close the solution to the original problem. For
details of this and proofs of convergence, we refer the reader to the appendix.
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To keep the exposition clear, let us Brst look at the one-step delay problem, i.e., N =1. The only constraint
there is that

Q0(z) = q0;0 = scalar independent of z:

The following shows how R is aMected.

Proposition 4.2. With the constraint Q0(z) = q0;0 as above,

R= UoutQ ⇔ R0(z) = q0;0U0(z); q0;0 is a scalar:

Proof. (⇒) Obvious.
(⇐) Let R be s.t. R0(z) = q0;0U0(z), q0;0 scalar. Consider

Q = q0;0 + U−1
out (R− Uoutq0;0)

Note that R− Uoutq0;0 is of the form �R̃(z; �) and hence

Q(z; 0) = q0;0:

Moreover,

UoutQ = R:

Hence, only R(z; 0) = R0(z) is aMected. If we denote

X = U∼
in H = · · ·X−1(z)�−1 + X0(z) + X1(z)�+ · · ·

and if "M represents the projection operator on a subspace M of L2, then by applying a standard projection
theorem (e.g., [7, p. 51]) we get that the optimal value of R is given by

Ropt ="H2(S0)[X ] ="S0 [X0(z)] + X1(z)�+ X2(z)�2 + · · · ;
where

S0 = {r(z): r(z) = q0;0U0(z) for some scalar q0;0}; H2(S0) =

{
X =

∞∑
i=0

Xi(z)�i ∈H2: X0(z)∈ S0

}
:

To Bnd "S0 [X0(z)] amounts to Bnding qopt0;0 such that

〈X0(z)− qopt0;0U0(z); q0;0U0(z)〉= 0 for any q0;0:

Therefore

qopt0;0 = 〈X0(z); U0(z)〉=〈U0(z); U0(z)〉:
For N -step delay the same albeit more complicated procedure holds. The key again is that only the N -coePcients
of R are aMected as the following shows.

Proposition 4.3. With the constraint Qi corresponding to 2i + 1 diagonal operator for i = 0; 1; : : : ; N − 1 it
holds that

R= UoutQ
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if and only if




R0(z)

...

RN−1(z)


=




U0(z)

U1(z) U0(z)

...
. . .

UN−1(z) · · · · · · U0(z)



L(z)q; (3)

where L(z) is given as

L(z) :=




1

1 (z−1 1 z)

1 (z−1 1 z) (z−2 z−1 1 z z2)

...
...

... · · ·
1 (z−1 1 z) (z−2 z−1 1 z z2) · · · (z−N+1 · · · z−1 1 z1 · · · zN−1)




and the vector q is of the form

qT := (qT0 qT1 · · · qTN−1) (4)

with

qTi = (qi;−i · · · qi;0 · · · qi; i): (5)

Proof. (⇒) Obvious.
(⇐) Let R be s.t. it satisBes the condition of the above proposition for some scalar vector q. For

i = 0; : : : ; N − 1 deBne Qi(z) :=
∑j=i

j=−i qi; jz
j and consider

QN (z; �) :=
i=N−1∑
i=0

Qi(z)�i:

DeBne

Q = QN + U−1
out (R− UoutQN )

Note that R− UoutQN is of the form �N R̃(z; �) and hence Q is of the required form and moreover,

UoutQ = R:

According to the parameterization (3) of R, computing the optimal solution in this case amounts to
calculating

Ropt ="H2(SN−1)[X ] = '0(z) + '1(z)�+ · · ·+ 'N−1(z)�N−1 + XN (z))�N + XN+1(z))�N+1 + · · · ;
where



'0(z)

'1(z)

...

'N−1(z)



="SN−1




X0(z)

X1(z)

...

XN−1(z)
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with

SN−1 =



r(z): r(z) =

∑
i=0;N−1
j=−i; i

qi; jVi; j(z) for some q



;

where the vector of scalars q is of form (4), (5) and

Vi;j(z) =




0

0

...

0



i

U0(z)

U1(z) + U0(z)

...

UN−1−i + · · ·+ U0




zj:

Then, by standard projection arguments, the vector qopt can be obtained as the solution of a set of linear
equations

Aqopt = p; (6)

where the matrix A and the vector p are as

A=




〈V0;0; V0;0〉 〈V1;−1; V0;0〉 〈V1;0; V0;0〉 〈V1;1; V0;0〉 〈V2;−2; V0;0〉 · · ·
〈V0;0; V1;−1〉 〈V1;−1; V1;−1〉 〈V1;0; V1;−1〉 〈V1;1; V1;−1〉 〈V2;−2; V1;−1〉 · · ·

...
...

...
...

...
...


 ;

p=




〈(X0 · · ·XN−1)T; V0;0〉
〈(X0 · · ·XN−1)T; V1;−1〉
〈(X0 · · ·XN−1)T; V1;0〉
〈(X0 · · ·XN−1)T; V1;1〉

...



:

Remarks. As it can be shown (see the appendix), QoptN (z; �) =Q0(z) +Q1(z)�+ · · · converges weakly to the
(unique) optimal solution Qopt as N → ∞. A sequence of feasible solutions to the original problem can be
obtained by considering the truncation

QN (z; �) =
N−1∑
i=0

Qi(z)�t :



356 P.G. Voulgaris et al. / Systems & Control Letters 50 (2003) 347–361

Then clearly QN satisBes the inBnite constraints of the original problem and hence if *N := ‖H −UQN‖ then
*N ¿  . Moreover, it is immediate that also QN converges weakly to the (unique) optimal solution Qopt as
N → ∞.
We would also like to emphasize that the relaxed problem is of interest in its own right and not necessarily

only due to its connection with the original problem posed. Indeed, several localized controller and plant
structures can be studied that need not impose an inBnite number of constraints on Q. This is a subject of
current research by the authors.

5. Examples

Example 1. Consider the following spatio-temporal system

y(i; k + 1)− y(i; k) =
T
L2

y(i + 1; k)− 2y(i; k) + y(i − 1; k)− ,y(i; k) + u(i; k):

This system comes from the Bnite-diMerence discretization of a certain PDE. For our current purpose,
however, it serves as an example of a system with nearest neighbor interaction, where eMects travel at the
speed of one neighbor per time unit. Taking the appropriate transforms one obtains the transfer function

G(z; �) =
y(z; �)
u(z; �)

=
T�

1− (-=2)(z−1 + 2.+ z)�
;

where

-=
2T
L2

; .=
L2

(2T )
− ,L2

2− 1 :

It can be easily checked that the dynamics of such a system are asymptotically stable under the following
conditions:

-¡ 1=(1 + .); .¿ 1− 1=-;
which in turn correspond to

,¿ 0; T ¡
1
2=L2

+ ,=2:

Moreover, G(z; �) is of form (1),

G(z; �) =
∞∑
i=1

T
( -
2

)i−1
(z−1 + 2.+ z)i−1�i:

We want to compute a decentralized controller for optimal H2 attenuation of an additive disturbance on the
system output with weighting function

W (z; �) =
�

1− (c=2)(z−1 + 2a+ z)�

which is of the same structure as the plant itself. We assume W (z; �) to be asymptotically stable as well, i.e.,

c¡ 1=(1 + a); a¿ 1− 1=c:
With the stabilizing controller parameterization

K(z; �) =
−Q(z; �)

1− G(z; �)Q(z; �)

with K(z; �) and Q(z; �) of the prescribed form, the problem can be stated as

min
Q

‖(1− GQ)W‖=min
Q

‖H − UQ‖;
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where

H (z; �) =
�

1− r(z)�
; U (z; �) =

T�2

(1− 2(z)�)(1− r(z)�)

and

2(z) =
-
2
(z−1 + 2.+ z); r(z) =

c
2
(z−1 + 2a+ z):

An inner–outer factorization of U (z; �) yields

Uin(z; �) = �2; Uout(z; �) =
T

(1− 2(z)�)(1− r(z)�)
:

Hence

X (z; �) =U∼
in (z; �)H (z; �) =

1
�(1− r(z)�)

= X−1(z)�−1 + X0(z) + X1(z)�+ X2(z)�2 + · · ·
= �−1 + r(z) + r2(z)�+ r3(z)�2 + · · · (7)

and

Uout(z; �) =U0(z) + U1(z)�+ U2(z)�2 + · · ·
= T + T (r(z) + 2(z))�+ T (r2(z) + r(z)2(z) + 22(z))�2 + · · · ;

i.e.,

Ui(z) = T
i∑

j=0

ri−j(z)2j(z):

Let us compute the solution to the N = 2 relaxed problem. We get

V0;0(z) = T [1 1 + r(z) + 2(z)]T; V1; i(z) = T [0 1]Tzi; i =−1; 0; 1:
Hence, by computing the inner products,

A= T 2




2(1 + ac + .-) + 2
( -
2
+

c
2

)2
+ (.-+ ac)2

-
2
+

c
2

1 + .-+ ac
-
2
+

c
2

-
2
+

c
2

1 0 0

1 + .-+ ac 0 1 0
-
2
+

c
2

0 0 1



;

p= T




ac +
c2

2
(1 + 2a2) +

ac3

2
(2a2 + 3) +

c2-
2
(2a+ .+ 2a2.)

ac2

c2(a2 + 1=2)

ac2



:
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Solving (6) we have

qopt =




qopt0;0

qopt1;−1

qopt1;0

qopt1;1


= T−1




ac

ac2=2− ac-=2

c2=2− .-ac − ac

ac2=2− ac-=2


 :

The optimal truncated solution to the two-step relaxation is then given by

Q2(z; �) = T−1ac − T−1[(ac-=2− ac2=2)z−1 + (.-ac − c2=2 + ac) + (ac-=2− ac2=2)z]�

We note that in this case Uout(z; �) satisBes the cone causality property and therefore R(z; �)=Uout(z; �)Q(z; �)
preserves such property. Hence, the value of R(z; �) corresponding to the optimal solution (not only to the
N -relaxed case but also to the original fully decentralized problem) is obtained by keeping only the terms of
the (temporally) causal part of X (z; �) which form the cone structure. Therefore, from (7),

Ropt(z; �) = ac + (ac2z−1 + c2(a2 + 1=2) + ac2z)�+ · · · :
The optimal solution to the H2 problem without decentralization constraints is given by

Qo =U−1
out "H2 [HU

−1
in ] = T−1(1− r(z)�)(1− 2(z)�)

(
r(z)

1− r(z)�

)

= T−1r(z)(1− 2(z)�) = T−1 c
2
(z−1 + 2a+ z)− T−1 c-

4
(z−1 + 2a+ z)(z−1 + 2.+ z)�;

which does not have the sought cone structure.
Assuming the following numerical values:

.= 1; -= 1
3 ; a= 1; c = 1

4

and computing the value *2 of the cost functional associated to the truncated 2-relaxed solution yields

*2 = ‖H (z; �)− U (z; �)Q2(z; �)‖= 1:0659:
For the optimal decentralized solution to the non-relaxed problem we have

X (z; �)− Ropt(z; �) = �−1 +
∞∑
i=1

( c
2

)i
(z−i + zi)�i−1 = �−1

(
1

1− (c=2)z−1� +
1

1− (c=2)z� − 1
)

yielding a cost functional value

 = ‖X − Ropt‖= 1:0157:
It is easily shown that the cost of the optimal centralized H2 solution is given by

‖H (z; �)− U (z; �)Qo(z; �)‖= 1:
It should be noted that the truncated solution to the N = 2 that corresponds to *2 is within 6% of the

optimal solution  .

Example 2. In the previous example, assume the disturbance weighting function W (z; �) to be

W (z; �) =
w(z)�

1− r(z)�
;

where

w(z) =
d
2
(z−1 + 2e + z):
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We get

H (z; �) =
w(z)�

1− r(z)�
; U (z; �) =

Tw(z)�2

(1− 2(z)�)(1− r(z)�)
:

Factorizing U (z; �) yields

Uin(z; �) = �2; Uout(z; �) =
Tw(z)

(1− 2(z)�)(1− r(z)�)

and hence

X (z; �) =U∼
in (z; �)H (z; �) =

w(z)
�(1− r(z)�)

=w(z)�−1 + w(z)r(z) + w(z)r2(z)�+ w(z)r3(z)�2 + · · ·
and

Uout(z; �) = Tw(z) + Tw(z)(r(z) + 2(z))�+ Tw(z)(r2(z) + r(z)2(z) + 22(z))�2 + · · ·
Note that in this case Uout(z; �) misses the cone structure. Hence, we cannot compute the fully decentralized

solution explicitly as in the previous example and we need to look at the relaxed problem. Again, let N = 2.
We get

V0;0(z) = T [w(z) w(z)(1 + r(z) + 2(z))]T; V1; i(z) = T [0 w(z)]Tzi; i =−1; 0; 1:
Assuming

.= 1; -= 1
3 ; a= e = 2; c = d= 1

10

computing the inner products and solving for qopt yields the following feasible solution Q2

Q2(z; �) = 0:2445T−1 + T−1[− 0:0315z−1 − 0:3309− 0:0315z]�
with cost

*2 = 0:2247:

Again, the optimal centralized solution is given by

Qo = T−1r(z)(1− 2(z)�) = T−1 c
2
(z−1 + 2a+ z)− T−1 c-

4
(z−1 + 2a+ z)(z−1 + 2.+ z)�

with cost

‖H (z; �)− U (z; �)Qo(z; �)‖= ‖w(z)�‖= d
2

√
2 + 4e2 = 0:2121:

Note that Qo again does not have the structure. Also, *2 is at most within 6% of optimal.

6. Conclusion

We considered optimal H2 control for stable distributed discrete-time systems with an inherent temporal
delay in the interaction of neighboring sites. When the same information passing delay structure is posed on
the controller, thus imposing a decentralization constraint, it was shown that the problem is a convex one by
employing the YJBK parameterization. A method for obtaining an exact solution was given for Bnite delay
in the transmission of information from site to site in the distributed controller.
The case of unstable systems can be similarly treated under appropriate assumptions. Also, the same input–

output approach is useful to provide computationally tractable design methods when other performance criteria
are of interest. These topics are the subject of current research by the authors.
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Appendix

Lower bound convergence. Let

 N := ‖H − UQoptN ‖ = ‖X − UoutQ
opt
N ‖= ‖X − RoptN ‖:

Obviously,

 N 6  N+16 · · ·6  :

Claim.

‖RoptN ‖6 2‖X ‖ for all N:

Proof.

‖X − RN‖¿ ‖RN‖ − ‖X ‖:
If

‖RN‖¿ 2‖X ‖;
then

‖X − RN‖¿ ‖X ‖:
But

‖X ‖¿  N

for any N since RN =UoutQN =0 (obtained with QN =0 which has the structure) is a legitimate RN . Therefore,
if

‖RN‖¿ 2‖X ‖;
then

‖X − RN‖¿ N

and so for RoptN to be optimal it is necessary that

‖RoptN ‖6 2‖X ‖;
which completes the proof of the claim.

Having ‖RoptN ‖ bounded uniformly implies ∃{RoptNn
} convergent weakly to RR. Now RR has the appropriate

structure for otherwise contradicts the weak convergence of {RoptNn
}. Indeed, suppose that RR of the form

RR= Uout RQ with RQ not having the cone causality. Note that requiring a Q to have cone causality means that

〈Q; Ftj〉= 0;
where

Ftj(z; �) = zj�t ; t = 0; 1; : : : and

j = · · · ;−(t + 2);−(t + 1); (t + 1); (t + 2); · · ·
As RoptNn

converges weakly to RR we have that for all F ∈L2

〈RoptNn
− RR; F〉 → 0; 〈Uout(QoptNn

− RQ); F〉 → 0; 〈QoptNn
− RQ;U ∗

outF〉 → 0;
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where U ∗
out is the adjoint of Uout in L2. Take F = (U ∗

out)
−1Ftj then F ∈L2 as Uout. U−1

out are bounded on
L2. Then

〈QoptNn
− RQ; Fts〉 → 0;

but 〈QoptNn
; Ftj〉= 0 for suPciently large Nn. Thus, RQ has to have the cone structure and hence RR is generated

by such RQ. The rest shows that  Nn →  and in fact existence of an optimal RR. By semicontinuity

lim inf‖X − RoptNn
‖¿ ‖X − RR‖:

But

 ¿ ‖X − RoptNn
‖=  Nn :

Thus

 ¿ ‖X − RR‖;
which shows that RR is the optimal Ropt and so is RQ = U−1

out
RR= : Qopt with cone causality satisBed, and,

 Nn →  . It also follows as by projection Ropt is unique, that the whole sequence QoptN → Qopt weakly and
 N →  .
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