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Nomenclature

a, e, i, Ω, ω, v = Classical orbital elements

p, f , g, h, k, L = Modified equinoctial elements

ρ, ex, ey, hx, hy, σ = Ideal elements

e = Relative eccentricity vector

g0 = Standard gravity, m/s2

Isp = Specific impulse, s

m = Spacecraft mass, kg

q = Thrust unit vector

Re = Earth radius, m

Rs = Sun radius, m

res = Satellite-Earth vector, m

rs = Earth-Sun vector, m

rss = Satellite-Sun vector, m

s = Ideal anomaly, rad

Tmax = Maximum deliverable thrust, N

t = Time, s

u = Control acceleration, m/s2

x = System state

z = Target equinoctial elements

α = Time/fuel trade-off parameter

γ = Relative inclination, rad

ε = Mesh error tolerance

∆m = Mass variation, kg

∆t = Time of flight, days

λ1, λ2 = Nodal elements, rad

µ = Earth gravitational parameter, m3/s2

2 of 35

American Institute of Aeronautics and Astronautics



ξ = Efficiency factor

ξcut = Cut-off parameter

%R = Radial perturbation, m/s2

%T = Transverse perturbation, m/s2

%N = Normal perturbation, m/s2

% = Perturbing acceleration vector, m/s2

%J2 = J2 acceleration vector, m/s2

ζ = Throttle command

η = Throttle control input

θe = Angular size of Earth radius, rad

θes = Earth-Sun angle, rad

θs = Angular size of Sun radius, rad

ϕaz, ϕel = Tuning parameters, rad

ψ = Shadow function

ψ` = Smoothed shadow function

I. Introduction

In recent years, low-thrust propulsion technologies such as Electric Propulsion (EP) have become

popular as the primary means of propulsion for both planetary and interplanetary space missions.

Their main appeal is a fuel efficiency which is ten times higher than that of conventional chemical

thrusters. This feature is especially relevant in applications requiring large delta-v increments, a

notable case being the orbital transfer about a central body. The low-thrust orbit transfer problem

can be stated as the determination of a continuous spacecraft trajectory that satisfies initial and

terminal conditions defined along two different orbits, while minimizing fuel expenditure and/or

time of flight (TOF). Except for very special cases, this is a nonlinear optimal control problem

(OCP) which is extremely hard to solve. Complications arise mainly due to the large time scale of

the maneuver and to the bang-off-bang structure of the optimal control policy, which arises in fuel

minimization problems as well as in problems involving eclipses. An evident indication of such

difficulties is that most papers on the subject deal only with a specific objective (either time or fuel
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optimization) or a specific transfer scenario.

Techniques for addressing the challenging issues in low-thrust trajectory optimization have

been investigated for many years. Historically, the solution strategies have been divided into two

general categories: indirect methods and direct methods [1]. In indirect methods, necessary con-

ditions for optimality are derived from optimal control theory via variational arguments. The

necessary conditions form a boundary-value problem which is solved numerically in order to de-

termine the optimal solution, see, e.g., [2–4]. The primary advantage of indirect methods is that

they provide highly accurate solutions. Their main drawback is the very high sensitivity of the

numerical solution to the initial guess for the costate variables, which makes these methods only

suitable for systems of relatively low dimension. Direct methods, on the other hand, transcribe the

continuous-time optimal control problem into a finite-dimensional nonlinear programming prob-

lem (NLP) which is solved by a nonlinear optimizer, see, e.g., [5–7]. This alleviates the sensitivity

issue, as the solution procedure is much more robust with respect to the selection of the initial

trajectory guess. In particular, direct pseudospectral methods (see, e.g., [8–10]) have been applied

to low-thrust problems with considerable success. In these methods, the state and control variables

are parameterized using polynomials, and the system evolution is approximated via orthogonal

collocation. Regardless of the transcription strategy, however, the application of direct methods

typically requires the solution of large and computationally demanding NLPs. For a complete

overview on these topics, the reader is referred to the dedicated books [11–13].

Despite the advances in optimization techniques and tools, the low-thrust orbit transfer problem

is still a computationally difficult one. Given the practical need to ease the computation, a number

of studies have focused on approximate or suboptimal solution strategies. In [14, 15], control

parametrization and averaging are exploited in order to reduce the size of the optimization problem.

Although these approaches are more computationally efficient compared to those based on the

exact dynamic model, the accumulated errors may be large, so that the true spacecraft trajectory

may fail to reach the target orbit. Lyapunov-based guidance laws such as the Q-law [16, 17] have

also been proposed in order to rapidly explore the solution space. These are usually quite robust

to modeling errors, but lack optimality due to their heuristic nature. For these reasons, they are
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commonly employed as an initial guess for subsequent optimization (see, e.g., [18]). In many

cases, however, finding an adequate set of tuning parameters for such guidance laws can be as

time consuming as the optimization process itself. Along a different line, some efforts have been

made to study the impact of different parameterizations of the orbital motion on the computational

efficiency of the optimization process, see, e.g., [19, 20]. In particular, it is found in [19] that

regularizing the orbital dynamics provides an effective way to speed-up the computation. In this

paper, we will show that large computational gains are possible by working on the parametrization,

while retaining the ability to solve the control problem to full optimality.

Another major source of complexity in low-thrust trajectory optimization is due to eclipsing.

This is particularly relevant since most of the existing EP system are solar powered and therefore

they are unable to operate during solar eclipse periods. Indeed, as pointed out in [21,22], low-thrust

trajectory optimization without concerns for eclipsing is futile when subsequent analysis reveal that

a thrusting maneuver has been scheduled in the shadow region. The net effect of solar eclipses is to

introduce a state-dependent discontinuity in the control input structure, which constitutes a serious

challenge for gradient-based optimization techniques. Unfortunately, this important issue is often

disregarded in the literature. In the seminal paper [23], the low-thrust orbit transfer problem with

eclipsing is tackled by adopting an indirect method. More recently, the problem has been framed in

the context of direct optimization. In particular, two different formulations have demonstrated their

utility in applications: single-phase and multi-phase ones. The multi-phase formulation divides the

OCP into multiple phases in which the system dynamics are smooth, while ensuring the continuity

of the state trajectory among different phases through an appropriate set of event constraints. In

this way, discontinuities are removed from the dynamic model and the optimization is cast over

the switch times. A limitation of this method is that the structure of the optimal solution must be

guessed a priori, which typically involves a rather complex machinery. For instance, it is not trivial

to determine whether a phase should be added to the formulation. Multi-phase approaches have

been employed in [21] and [24] for the solution of minimum-fuel and minimum-time problems

with eclipsing, respectively. The single-phase formulation is defined in the usual way and considers

the OCP as a whole. An advantage of this method over multi-phase formulations is that it requires
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no prior information about the structure of the optimal solution, although some kind of smoothing

is needed for the system dynamics. In [22], a single-phase approach is employed in combination

with a smoothed eclipse model in order to solve a minimum-fuel problem involving a large number

of orbital revolutions. This is done by using hybrid differential dynamic programming [25]. In [26],

the minimum-time problem with eclipsing is similarly cast and it is solved via collocation. A

suboptimal solution to the minimum-fuel problem, which consists of applying the Q-law in the

eclipsed part of the transfer and the optimal control policy in the remaining part, is also discussed.

The aim of this paper is to present a new approach for the optimization of low-thrust orbit

transfers, employing a direct collocation method. The work is in the same spirit of [22, 26], but

some key features are introduced in the problem definition. First, equinoctial elements are replaced

by a novel nonsingular set of ideal elements inspired by Hansen’s theory (see [27–29]) for the

description of the orbital motion. The rationale behind this choice is the observation that the

dynamics of the ideal anomaly do not directly depend on the perturbing acceleration, as opposed to

those of all other anomalies. This makes the ideal anomaly attractive as a basis for regularization

(see, e.g., [30, 31]). Moreover, ideal elements enjoy a higher level of sparsity of the dynamic

model structure compared to other element sets. This is advantageous because the OCP to be

solved turns out to be a sparse NLP. As a second contribution, a flexible optimization framework

is established, which unifies different types of performance requirements under the same single-

phase OCP formulation. The adopted cost function involves a convex combination of TOF and

fuel consumption, providing a suitable way to trade off these objectives by means of a scalar

parameter. Eclipse effects are taken into account by adapting the smoothing technique in [22] to

the the proposed state parametrization. The OCP is transcribed into a sparse NLP by using the

commercial package GPOPS–II [32], which implements an hp-adaptive Legendre–Gauss–Radau

pseudospectral collocation strategy. The NLP is then solved by using a sparse nonlinear optimizer.

Furthermore, a new Lyapunov-based guidance scheme that addresses the initial guess generation

problem is devised. The guidance scheme features only three assignable parameters, which can be

tuned in an intuitive manner.

The proposed optimization architecture is tested on two orbit transfer scenarios taken from the
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literature: a GTO-GEO transfer and a LEO-GEO transfer. Simulation results show that the method

is able to solve minimum-time, mimimum-fuel and mixed time/fuel-optimal problem instances

involving many eclipse transitions in a computationally efficient manner. Moreover, the capability

of the method to solve large-scale optimization problems on low-power hardware is demonstrated

for a realization featuring nearly half a million NLP variables. Overall, the obtained results indicate

that the adopted parametrization and optimization scheme allow one to tackle the low-thrust OCP

with relative ease in comparison to previous approaches.

The paper is organized as follows. Section II illustrates the new parametrization of the orbital

motion and Section III details the dynamic model used for trajectory optimization as well as the

eclipse smoothing technique. Section IV discusses the proposed OCP formulation and Section V

presents the Lyapunov guidance scheme employed for the initial guess generation. Detailed simu-

lation case studies of the optimization architecture are presented in Section VI for the considered

orbit transfer scenarios. Section VII summarizes the main findings of this research and finalizes

the paper.

II. Parametrization of the Orbital Motion

The first step towards the derivation of an optimal orbit transfer strategy is to define a suitable set of

parameters describing the orbital motion and to determine how such parameters evolve in response

to perturbations. In this section, the perturbed Kepler problem is briefly reviewed and a new

parametrization of the orbital motion is presented for this problem. The proposed parametrization

is based on a nonsingular set of orbital parameters inspired by Hansen’s theory.

A. Perturbed Kepler Problem

The perturbed Kepler problem amounts to describing the evolution of an orbit in response to a per-

turbing acceleration that accounts for all contributions other than point mass gravity. The classical

solution to this problem is expressed in terms of the orbital elements {a, e, i, Ω, ω, v}, namely the

semimajor axis, eccentricity, inclination, right ascension of the ascending node, argument of peri-

apsis, and true anomaly. Let %R, %T and %N be the radial, transverse and normal components of the
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perturbing acceleration, expressed in the Radial-Transverse-Normal frame centered at the satellite.

Whenever nonconservative perturbations such as thrusting are involved, it is customary to describe

the evolution of the classical elements through Gauss’ variational equations

ȧ =
2a2√

µa(1 − e2)

[
e sin(v) %R + (1 + e cos(v)) %T

]
ė =

√
a(1 − e2)

µ

[
sin(v) %R +

e + (2 + e cos(v)) cos(v)
(1 + e cos(v))

%T

]

i̇ =

√
a(1 − e2)

µ

[
cos(v + ω)
1 + e cos(v)

%N

]

Ω̇ =

√
a(1 − e2)

µ

[
sin(v + ω)

(1 + e cos(v)) sin(i)
%N

]

ω̇ =

√
a(1 − e2)

µ

[
−

cos(v)
e

%R +
(2 + e cos(v)) sin(v)

e(1 + e cos(v))
%T −

sin(v + ω) cot(i)
1 + e cos(v)

%N

]

v̇ =

√
µ

a3

(1 + e cos(v))2

(1 − e2)3/2 +

√
a(1 − e2)

µ

[
cos(v)

e
%R −

(2 + e cos(v)) sin(v)
e(1 + e cos(v))

%T

]

(1)

where µ is the gravitational parameter and the overdot symbol denotes the time derivative.

As seen from Eq. (1), the variational equations for the classical elements are singular at e = 0

and i = 0, i.e., for circular and equatorial orbits. The standard method to overcome this issue is to

employ a set of modified equinoctial elements defined by

p = a(1 − e2)

f = e cos(Ω + ω)

g = e sin(Ω + ω)

h = tan(i/2) cos(Ω)

k = tan(i/2) sin(Ω)

L = Ω + ω + v

(2)

The dynamics of the modified equinoctial elements are obtained by differentiating (2) with respect

to time and using (1), which results in a highly coupled set of differential equations, see, e.g., [33].
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In particular, the normal component %N of the perturbing acceleration affects the evolution of all

the parameters in (2), except for the semiparameter p. This is undesirable from the point of view

of numerical optimization, which often benefits from sparsity in the system model structure [20].

In the following, an alternative set of nonsingular elements is presented to address this issue.

B. Ideal Elements

Let us define the ideal anomaly s via the integral relation

s =

∫ t

t0

√
µ

a3(τ)
[1 + e(τ) cos(v(τ))]2

[1 − e2(τ)]3/2 dτ (3)

where t denotes the actual time and t0 is the initial time. Notice from (1) that the time derivative

of (3) is equal to v̇ for the unperturbed motion (%R = %T = %N = 0). However, the analogy breaks

down in the perturbed case. Based on (2)-(3), the following set parameters is proposed in order to

describe the orbital motion

ρ = p/Re

ex = f cos(L − s) + g sin(L − s)

ey = − f sin(L − s) + g cos(L − s)

hx = h cos(L − s) + k sin(L − s)

hy = −h sin(L − s) + k cos(L − s)

σ = L − s

(4)

where Re is the radius of the central body (the Earth in this study). The parametrization (4) is

obtained from the modified equinoctial elements by normalizing the semiparameter p, subtracting

the ideal anomaly from the true longitude to obtain the slowly time-varying parameter σ, and

rotating both the eccentricity vector [ f g]T and the ascending node vector [h k]T by an angle −σ

about the orbit normal. The latter transformation corresponds to rotating the equinoctial frame

by an angle σ about the orbit normal, so as to match the instantaneous orientation of the Hansen

ideal frame (see, e.g., [34]). Indeed, σ is precisely the in-plane angle between the basis vectors
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of the Hansel frame and that of the equinoctial frame (in this paper, the initial orientation of the

Hansen ideal frame, i.e., the so-called departure frame, is defined by setting σ(t0) = L(t0), so that

s(t0) = 0). One can thus refer to the parameters in (4) as ideal elements.

The variational equations for the ideal elements are obtained from (1)-(4) as

ρ̇ =

√
Reρ
√
µ κc

2ρ %T

ėx =

√
Reρ
√
µ κc

{
κc sin(s) %R +

[
2κc cos(s) + κs sin(s)

]
%T

}
ėy =

√
Reρ
√
µ κc

{
− κc cos(s) %R +

[
2κc sin(s) − κs cos(s)

]
%T

}
ḣx =

√
Reρ
√
µ κc

[
hxhy sin(s) + κx cos(s)

]
%N

ḣy =

√
Reρ
√
µ κc

[
hxhy cos(s) + κy sin(s)

]
%N

σ̇ =

√
Reρ
√
µ κc

[
hx sin(s) − hy cos(s)

]
%N

(5)

where
κc = 1 + ex cos(s) + ey sin(s)

κs = ex sin(s) − ey cos(s)

κx = (1 + h2
x − h2

y)/2

κy = (1 − h2
x + h2

y)/2

(6)

Notice that the right hand side of (5) is independent of the parameter σ. Moreover, the normal

component %N of the perturbing acceleration affects only the parameters hx, hy and σ.

The particular structure of (5)-(6) suggests to adopt the ideal anomaly s as the independent

integration variable. Such a procedure is commonly known as regularization [31]. Hereafter, the

notation (·)′ = d(·)/ds will be adopted. From (2)-(4) and (6) one has that

t′ =
dt
ds

=

√
R3

e

µ

ρ3/2

κ2
c

:= κt (7)

where the actual time t is now a dependent variable, i.e., t = t(s). Therefore, the regularized
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dynamics of the ideal elements take on the form

[ρ′ e′x e′y h′x h′y σ
′]T = κt [ρ̇ ėx ėy ḣx ḣy σ̇]T (8)

with [ρ̇ ėx ėy ḣx ḣy σ̇]T as in (5)-(6).

III. System Model

In this Section, the proposed parametrization of the orbital motion is exploited to define the system

dynamic model used for trajectory optimization. The model includes thrusting, Earth oblateness,

and solar eclipse effects.

Let us define the state vector x = [ρ ex ey hx hy σ]T and the acceleration vector % =

[%R %T %N]T . The vector % accounts for the perturbing acceleration %J2 induced by the zonal

harmonic J2 of the gravitational potential and for a control acceleration u, i.e.,

% = %J2 + u (9)

The contribution %J2 can be expressed in terms of x and s as follows

%J2(x, s) = −
3µ κ4

c J2

2 R2
e ρ

4



1 −
12(hx sin(s) − hy cos(s))2

(1 + h2
x + h2

y)2

8(hx sin(s)−hy cos(s))(hx cos(s)+hy sin(s))
(1 + h2

x + h2
y)2

4(hx sin(s) − hy cos(s))(1 − h2
x − h2

y)

(1 + h2
x + h2

y)2


(10)

where J2 is the J2 harmonic coefficient [35]. The regularized dynamics of the state vector x are

obtained from (5)-(10) as follows

x′ = f(x, s) + G(x, s)u (11)
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where f(x, s) = G(x, s)%J2(x, s) and

G(x, s)=
R2

e ρ
2

µ κ3
c



0 2ρ 0

κc sin(s) 2κc cos(s)+κs sin(s) 0

−κc cos(s) 2κc sin(s)−κs cos(s) 0

0 0 hxhy sin(s)+κx cos(s)

0 0 hxhy cos(s)+κy sin(s)

0 0 hx sin(s) − hy cos(s)


The input vector u in (11) describes the acceleration generated by the spacecraft propulsion

system, which in this work consists of a steerable thruster. More specifically, the three-dimensional

vector u is parameterized as

u =
Tmax

m
ζ q (12)

where Tmax is the maximum deliverable thrust, m is the satellite mass, ζ ∈ [0, 1] is the throttle

factor, and q is the unitary thrust direction vector (‖q‖ = 1). In this setting, the actual control

commands are ζ and q.

The mass variation due to thrusting is accounted for by augmenting system (11)-(12) with the

regularized mass flow rate equation

m′ = −κt
m ‖u‖
g0 Isp

= −κt
Tmax

g0 Isp
ζ (13)

where g0 denotes the standard gravity and Isp is the specific impulse. The dynamic model descrip-

tion is completed by the timing equation (7). The full system state vector is then [xT m t]T and the

corresponding regularized dynamic equations are given by (7), (11) and (13).
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A. Eclipse Conditions

A spacecraft is shadowed from the Sun when the angle θes between the Earth and the Sun, seen

from the spacecraft, is smaller than the apparent angular size θe of the Earth radius plus the apparent

angular size θs of the Sun radius. A standard definition for the shadow function is then

ψ =


0 if θes ≤ θe + θs

1 if θes > θe + θs

(14)

where ψ = 0 indicates that that the satellite is shadowed, while no shadowing takes place for ψ = 1.

The angles θes, θe and θs are given by

θes = arccos
(

rT
esrss

‖res‖ ‖rss‖

)
θe = arcsin(Re/‖res‖)

θs = arcsin(Rs/‖rss‖)

(15)

where res and rss are the Earth and the Sun position vectors relative to the spacecraft, and Rs

denotes the Sun radius. The satellite-Sun vector rss is given by

rss = rs(t) + res (16)

where rs(t) is the ECI position vector of the Sun, which is available as a function of time from

ephemeris data. The position vector res can be expressed in terms of x and s as follows

res = κr


cos(s − σ)(h2

x − h2
y) + 2 sin(s − σ)hxhy + cos(s + σ)

sin(s − σ)(h2
y − h2

x) + 2 cos(s − σ)hxhy + sin(s + σ)

2(hx sin(s) − hy cos(s))


(17)

where

κr = −
Re ρ

κc(1 + h2
x + h2

y)
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For the purpose of numerical optimization, the step function (14) is smoothed by using a logis-

tic function of the form [22]

ψ` =
1

1 + e c ` (18)

where c > 0 is an assignable gain and ` = θe + θs − θes. Notice that such an approximation does not

necessarily involve a decrease of modeling accuracy. In fact, eclipse transitions are truly smooth

physical phenomena.

IV. Optimal Control Problem

In this paper, the control objective is to transfer a satellite from a given initial orbit towards a

predefined target orbit in finite time. The target orbit is specified in terms of equinoctial elements

(see (2)) by introducing the reference state vector

z =



p

f

g

h

k


=



a(1 − e2)

e cos(Ω + ω)

e sin(Ω + ω)

tan(i/2) cos(Ω)

tan(i/2) sin(Ω)


(19)

Let s f be the final value for the integration variable s. According to (4), the orbit matching condi-

tion at instant s f can be formalized as

Cx(s f ) − D(σ(s f ))z = 0 (20)
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where C = [I5×5 05×1] and

D(σ) =



1/Re 0 0 0 0

0 cos(σ) sin(σ) 0 0

0 − sin(σ) cos(σ) 0 0

0 0 0 cos(σ) sin(σ)

0 0 0 − sin(σ) cos(σ)


(21)

Thrust limitations due to eclipsing are taken into account in (12) by setting

ζ = ψ` η (22)

and considering η ∈ [0, 1] as a new throttle control input. Substituting (22) into (12) gives the

expression for the control input vector applied to system (11)

u =
Tmax

m
ψ` ηq (23)

where the decision variables are η and q.

For the system model at hand, the time of flight (TOF), expressed in days, is given by

∆t =
t(s f ) − t(0)

86400
(24)

Moreover, by using (13),(22), and the fact that 0 ≤ ψ` ≤ 1, one can establish the following upper

bound on the fuel consumption

∆m =

∫ s f

0
κt

Tmax

g0 Isp
η ds (25)

where κt = κt(x, s) according to (6)-(7). In order to trade off fuel consumption and TOF, we define

the performance index

J = (1 − α) ∆t + α∆m (26)

where α ∈ [0, 1] is a predefined constant. The considered optimal control problem is then formu-
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lated as
min
q, η, s f

J = (1 − α) ∆t + α∆m

s.t. x(0) = x0, m(0) = m0, t(0) = t0

x′ = f(x, s) + G(x, s)
Tmax

m
ψ` ηq

m′ =−κt
Tmax

g0 Isp
ψ` η

t′ = κt

Cx(s f ) − D(σ(s f ))z = 0

Lmin ≤ σ(s f ) + s f ≤ Lmax

∆tmin ≤ ∆t ≤ ∆tmax

0 ≤ η ≤ 1

‖q‖ = 1

(27)

where x0, m0 and t0 are given initial conditions and {Lmin,∆tmin}, {Lmax,∆tmax} are prescribed lower

and upper bounds for the terminal values of the true longitude and of the TOF (one can assign a

fixed terminal longitude L and a fixed TOF ∆t by setting Lmin = Lmax = L and ∆tmin = ∆tmax = ∆t ).

Notice that the final value s f of the ideal anomaly is itself a decision variable. Problem (27) is

in the form of a standard Bolza problem for the nonlinear nonautonomous system defined by the

regularized dynamics of the state vector [xT m t]T .

Remark 1. The upper bound (25) has been employed to avoid including the stiff function ψ` =

ψ`(x, t, s) in the optimization cost. This is done to facilitate numerical optimization. The resulting

∆m is an excellent approximation of the actual fuel consumption dictated by (13),(22), due to the

minimization with respect to η and the fact that for sufficiently large values of c the shadow function

(18) closely approximates the step function.

Remark 2. The nonconvex constraint ‖q‖ = 1 has been identified as a major source of computa-

tional issues for the solution of problem (27). For ease of computation, in the software implemen-

tation of (27) this constraint is reformulated by introducing the auxiliary decision vector w and
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enforcing q = w/‖w‖ as well as the convex inequality ‖w‖2 ≤ 1. The latter is included without loss

of generality in order to bound the domain of the OCP.

A collocation approach is employed to transcribe the continuous-time problem (27) into a

finite-dimensional NLP, which is then solved with a suitable nonlinear optimizer. It is worth re-

calling that, due to the lack of convexity of problem (27), the quality of the solution will be highly

dependent of the availability of a reasonable initial guess. In the following, a Lyapunov-based

guidance strategy addressing the initial guess generation problem is presented.

V. Initial Guess Generation

The initial guess provides the initialization point for the NLP solver. In order to generate an initial

guess for the solution of problem (27), one has to determine a suitable value for s f as well as

a candidate trajectory, defined on the interval s ∈ [0, s f ], for the state and control components

{x(s), m(s), t(s), q(s), η(s)}. Technically speaking, the initial guess need not be a feasible solution

to problem (27), therefore any trajectory may be used in principle. However, experience suggests

that for large-scale optimization problems such as the one considered herein the initial guess must

be reasonably close to feasibility, otherwise the optimizer may fail to return a solution [12]. In

this respect, the application of feedback control techniques based on Lyapunov theory has seen a

considerable success. A Lyapunov guidance scheme inspired by the Q-law [16, 17] is proposed

below. It aims at providing a good initial guess for the optimization of low-thrust orbit transfers

involving predefined changes in all orbital elements except for the true anomaly.

A. Lyapunov-based Guidance Scheme

The first step for the derivation of the guidance scheme is to quantify the deviation between the

controlled orbit and the target one (note that the parameters in Section II do not quantify such

deviation, as they describe the absolute motion). To this aim, we find it convenient to employ a

subset of the orbital parameters introduced in [36]. In particular, we will make use of the relative

inclination γ (the angle between the orbital planes of the two orbits), and of the angles λ1 and λ2

made respectively by target periapsis and the periapsis of the controlled orbit, with respect to the
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relative line of nodes. By using the results in [36] together with (2), (4) and (19), one can construct

a nonlinear coordinate transformation y = y(x, z) such that

[
a e γ λ1 λ2

]T

= y(x, z) (28)

Defining the relative eccentricity vector as

e =

 e cos(λ2) − e cos(λ1)

e sin(λ2) − e sin(λ1)

 , (29)

it can be verified that the controlled and the target orbits coincide if a = a, e = 0 and γ = 0, where

a and e denote respectively the target semimajor axis and eccentricity. As a scalar measure of the

deviation of a from a, of e from 0, and of γ from 0, we consider the Lyapunov function candidate

V(y) =
ka

2

√
µ

a


√

a
a
− 1

2

+

√
µ

p

[
ke
‖e‖2

2
+ kγ tan2

(
γ

2

)]
(30)

where ka ≥ 0, ke ≥ 0, kγ ≥ 0 are constant weighting parameters (for the sake of exposition,

the dependance on constant parameters is not made explicit in the argument of V). The rationale

behind the definition of (30) is similar to that leading to the Q-law. While the Q-law attempts to

quantify the “best-case quadratic time-to-go” for the maneuver, the specific form of (30) attempts

to quantify the delta-v needed to bring the actual orbit to the target orbit. Indeed, it can be easily

seen that the dimensional unit of (30) is m/s.

The s-derivative of (30) is evaluated along the trajectory of system (11), neglecting J2 effects

(i.e., f(x, s) = 0). This results in

V ′ = hT u (31)

where

h = h(x, s, z) :=
∂V(y)
∂y

∂y(x, z)
∂x

G(x, s).
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Substituting (23) into (31) gives

V ′ = hT Tmax

m
ψ` ηq (32)

In order to achieve V ′ ≤ 0, the following functional form is assigned to the initial guess of the

thrust direction vector q

q = −
h
‖h‖

(33)

Substituting (33) into (32), one gets

V ′ = −‖h‖
Tmax

m
ψ` η (34)

so that V ′ ≤ 0, as expected.

In (34), the throttle control input η ∈ [0, 1] is yet to be specified. The initial guess of η is

specified according to the coasting mechanism described in [17], which employs the time derivative

of V as an indicator of whether to thrust or coast. The time derivative V̇ is obtained from (7) and

(34) as

V̇ =
V ′

κt
= −
‖h‖
κt

Tmax

m
ψ` η (35)

At each instant s, the maximum value hmax and minimum value hmin of the gain factor ‖h‖/κt =

‖h(x, s)‖/κt(x, s) in (35) are predicted over a future time span whose length is equal to one orbital

period. This is done by sweeping τ over the interval [s, s + 2π] in the expression ‖h(x, τ)‖/κt(x, τ),

while holding the system state x constant and equal to the present value x(s). A minor amendment

of the method in [17] is implemented so as to effectively cope with eclipse effects. It boils down

to discarding eclipse periods occurring in the interval [s, s + 2π] when computing hmax and hmin

(in other words, hmax and hmin are evaluated over non-eclipsed orbital arcs). Then, a thrusting

efficiency factor is defined as

ξ =
‖h‖/κt − hmin

hmax − hmin
(36)

A coasting phase is enforced whenever the thrusting efficiency is below a predefined threshold

ξcut ∈ [0, 1], by setting η = 0 if ξ < ξcut. Throttle cut-offs due to eclipsing are accounted for by
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setting η = ψ` when ξ ≥ ξcut. Summarizing, one has that

η =


ψ` if ξ ≥ ξcut

0 if ξ < ξcut

(37)

For minimum time problems, it is customary to set ξcut = 0, so as to fire the thruster whenever it

is possible. For ξcut > 0 a trade-off is established between TOF and control effort. For additional

details about the coasting mechanism, the reader is referred to [17].

The initial guess for the state and control components {x(s), m(s), t(s), q(s), η(s)} is generated

by integrating system (7),(11),(13) with the control input (23),(33),(37). Due to the way the feed-

back control policy is defined, the initial guess gets close to a feasible solution to problem (27) as

soon as the Lyapunov function (30) approaches zero. An interesting feature of the proposed guid-

ance scheme is that scaling all the weighting parameters in (30) by the same positive constant does

not change the control policy, and hence it does not affect the state trajectory guess. This allows

one to restrict the domain of definition of {ka, ke, kγ} to the positive orthant of the unit sphere, by

means of the spherical coordinate transformation

ka = cos(ϕaz) cos(ϕel)

ke = sin(ϕaz) cos(ϕel)

kγ = sin(ϕel),

(38)

where the free parameters are ϕaz ∈ [0, π/2] and ϕel ∈ [0, π/2]. In this way, the tuning of the initial

guess can be conveniently cast as a two-dimensional search over {ϕaz, ϕel} for minimum time prob-

lems or a three-dimensional search over {ϕaz, ϕel, ξcut} for problems involving fuel optimization.

For the case studies presented in Section VI, we adopted a naive search procedure which consists

of initializing all the tuning parameters to zero, increasing ϕaz and ϕel until a reasonably low TOF is

achieved, and then increasing ξcut until the desired TOF/fuel trade-off is reached. By doing so, we

were able to generate a suitable trajectory guess in a few minutes. The use of the parametrization

in [36] is instrumental to this purpose, as it allows one to describe the relative motion via a minimal
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Figure 1. Illustration of the initial mesh generation strategy, showing the profile of the shadow function (14)
together with the location the mesh points.

set of variables, which translates into a reduced number of weighting parameters in (30). It is also

worth remarking that the control policy (33),(37) is well defined for circular and equatorial orbits,

as opposed to the Q-law formulation.

B. Definition of the Initial Mesh

In order to solve (27) by collocation, one must specify an initial mesh, i.e., a discretization grid for

the initial guess. In hp-adaptive collocation methods, the mesh is refined during the solution pro-

cess either by dividing a mesh segment or by increasing the number of collocation points within the

segment. Clearly, the size and thus the complexity of the optimization problem will be proportional

to the resolution of the initial mesh. Moreover, as with any mesh refinement method, the perfor-

mance of the hp method does depend upon the structure of the initial mesh. For these reasons,

the definition of the initial mesh is a critical step of the solution process. The approach proposed

herein for the generation of the initial mesh is as follows. First, system (7),(11),(13),(23),(33),(37)

is numerically integrated and the solution is collected at equally spaced points in the domain s,

unless an eclipse event is detected. The event detection routine keeps track of all eclipse transi-

tions and associates a sample point to each transition. The resulting sample sequence is eventually

downsampled by using a method that involves a reduction of the downsample factor in the event

proximity. This produces a discretization grid which is finer in correspondence of eclipse transi-
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tions (see Fig. 1), where the system dynamics are inherently stiff. The transitions of the throttle

control input η arising from (37) are not treated as events, as they vary less predictably in the

solution process and can be assigned freely by the optimizer.

VI. Numerical Simulations

In this section, the results of numerical simulations are reported for two benchmark orbit transfer

scenarios taken from the literature in order to demonstrate the capabilities of the proposed method.

The single-phase OCP (27) is solved using the MATLAB optimal control software GPOPS–II [32]

in combination with the NLP optimizer IPOPT [37]. GPOPS–II employs an hp-adaptive Legen-

dre–Gauss–Radau quadrature orthogonal collocation strategy where the optimal control problem

is transcribed into a large sparse NLP, and the NLP is solved on successive mesh iterations un-

til a desired accuracy is achieved. The initial guess for the first mesh iteration is obtained as in

Section V. In subsequent iterations, the solver is warm-started with the optimal solution from the

previous iteration. In this study, the hp mesh refinement strategy described in [38] is employed.

Besides the standard features of hp methods, the approach in [38] provides the ability to merge

mesh segment and to lower the degree of the approximating polynomial, potentially reducing the

size of the optimization problem. The mesh refinement accuracy tolerance is set to ε = 5 · 10−6,

unless otherwise specified. The number of collocation points per mesh segment is allowed to vary

from 4 to 6. The IPOPT optimizer is set up with the linear solver ma57 and an error tolerance

of 5 · 10−7. The first and second derivatives required by IPOPT are computed analytically by the

automatic differentiation software ADiGator [39]. The constant c in (18) is set to c = 298.78,

which according to [22] is a realistic value for Earth-centered transfers. All the simulations have

been performed on a laptop equipped with a Intel Core I7-5600U processor and 16 GB of RAM.

A. GTO-GEO Transfer

Herein, we consider the GTO–GEO orbit transfer problem previously solved in [24,26] via GPOPS-

II. The equinoctial elements for the initial GTO and the target GEO are reported in Table 1. The

GTO elements refer to an orbit with a perigee of 6563.6 km, an apogee of 42164.3 km, and an
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Table 1. Equinoctial elements of the initial and the target orbit for the GTO-GEO transfer

Orbit p (km) f g h k
GTO 11359.07 0.7306 0 0.2539676 0
GEO 42165 0 0 0 0

inclination of 28.5 deg. The GEO elements refer to a circular, equatorial orbit with a radius of

42165 km. The Julian date at the beginning of the transfer is JD0 = 2451625.5. The propulsion

parameters are Tmax = 0.31158 N and Isp = 1800 s, while the spacecraft initial mass is m0 = 1200

kg. All planetary constants for this problem are set equal to those in [24, 26] and are not reported

here for brevity.

Problem (26)-(27) is set up with α = 0 in order to determine the minimum TOF for the transfer.

The initial guess for the problem is generated by tuning the guidance scheme with ϕaz = 7 · π/180

rad, ϕel = 45 · π/180 rad and ξcut = 0, resulting in trajectory with a TOF of 120.42 days and in a

fuel expenditure of 169.79 kg. The trajectory obtained by solving the OCP is depicted in Fig. 2.

It covers approximately 162 revolutions, in terms of the true longitude. The components of the

thrust direction vector q are shown in Fig. 3. The throttle control input η is always forced to 1

except during eclipse phases. The resulting TOF is 118.74 days and the fuel consumption amounts

to 169.38 kg. In this case, they are not far from those provided by the initial guess. The total CPU

time for the optimization process is 16 minutes.

The obtained results are compared with those in [24, 26] in Table 2. Both the TOF and the

fuel consumption are lower than those in Ref. [24] and practically equal to those in Ref. [26].

Remarkably, the CPU time is one order of magnitude smaller compared to that in Ref. [26]. This

is an especially good result considering that in [26] the mesh error tolerance is set to 10−5, while

we employed a tolerance value of 5 · 10−6. As a consequence, we ended up solving a problem

with approximately twice the number of NLP variables. Since the main differences between the

approach in [26] and the proposed one lie in the parametrization of the dynamic model and in the

way the optimization problem is formulated, the observed gain in computational efficiency should

be attributed to these two factors. A detailed breakdown of the mesh iteration history is reported

in Table 3. Note that the number of variables in the first iteration is actually higher than that in the
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Figure 2. Planar projection of the time-optimal GTO-GEO transfer trajectory: thrust phases are colored red,
eclipse phases are colored gray. Note that the apoapsis is first raised above and then lowered to the GEO height,
which leads to some trajectory overlap in the lower portion of the figure.

Table 2. Literature comparison for the GTO-GEO transfer. All solutions are obtained on hardware with similar
specifications.

Source TOF (days) Fuel (kg) CPU time (min)
Ref. [24] 121.22 172.23 n/a
Ref. [26] 118.62 169.44 165

This paper 118.74 169.38 16

last iteration, indicating that the initial mesh is on average more dense than the final one. Although

this may seem counter-intuitive, it turned out that initializing the solver with a denser initial mesh

does result in a lower number of mesh iterations, which in turns leads to a shorter overall CPU

time. Table 3 also demonstrates the ability of the mesh refinement algorithm [38] to compress the

problem size, thus reducing the computational burden.
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Figure 3. Thrust direction vector profile (interpolated from all non-eclipsed trajectory samples) for the time-
optimal GTO-GEO transfer.

Table 3. Mesh iteration history for the time-optimal GTO-GEO problem

Iteration Mesh error NLP var. CPU time
1 9.97e-5 162337 317.7 s
2 5.03e-5 127693 95.07 s
3 6.15e-6 129901 158.4 s
4 5.35e-6 130069 164.1 s
5 4.76e-6 130117 183.7 s

A fuel-optimal GTO-GEO transfer with fixed TOF has been simulated by setting α = 1 and

∆tmin = ∆tmax = 129.4 days in (26)-(27). The initial guess is left unchanged and equal to that of the

minimum time problem, so as to assess the capability of the method to locate optimal coasting arcs

without prior indication (i.e., to identify the bang-off-bang structure of the fuel-optimal solution).

The problem is solved twice using two different mesh error tolerance levels: ε = 5 · 10−6 and
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Figure 4. Planar projection of the fuel-optimal GTO-GEO transfer trajectory: thrust phases are colored red,
eclipse phases are colored gray, and optimal coast phases are colored blue.

ε = 5 · 10−7. The solution for ε = 5 · 10−6 features a fuel consumption of 159.39 kg and takes a

CPU time of 25.4 min. It involves 7 mesh iterations, with a number of NLP variables in the final

mesh equal to 126132. The solution for ε = 5 · 10−7 features a fuel consumption of 159.24 kg and

takes a CPU time of 94.6 min. The number of mesh iterations and of NLP variables in the final

mesh amount respectively to 11 and 180444. It can be seen that the optimal cost is approximately

the same for the two solutions, and that the computational load scales reasonably well with the

mesh accuracy. From a qualitative point of view, a lower mesh error tolerance results in a more

accurate localization of the coast arcs. The trajectory obtained for ε = 5 · 10−7, reported in Fig. 4,

covers 165 orbital revolutions and cumulates 420 on-off throttle command transitions. A detail of

the throttle control input profile is shown in Fig. 5.

The mixed time/fuel-optimal problem has been investigated by solving (26)-(27) with α = 0.5.
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Figure 5. Detail of the throttle control input profile for the fuel-optimal GTO-GEO transfer.

Table 4. Results for the GTO-GEO transfer

Solution type TOF (days) Fuel (kg) CPU time (min)
Time-optimal 118.74 169.38 16
Mixed (α = 0.5) 122.62 162.40 36.9
Fuel-optimal 129.4 (fixed) 159.39 25.4
Fuel-optimal (ε=5 · 10−7) 129.4 (fixed) 159.24 94.6

In this case, the TOF is not assigned and the optimizer has to search for a pareto-optimal solution.

The resulting performance figure is: TOF of 122.6 days, fuel consumption of 162.4 kg and CPU

time of 36.9 min. The pareto-optimal solution displays a TOF that is close to the time-optimal one,

while the fuel expenditure is lowered by approximately 7 kg compared to the time-optimal policy.

The GTO-GEO transfer results are summarized in Table 4.

B. LEO-GEO Transfer

Herein, we consider the same LEO–GEO orbit transfer scenario studied in [21,22]. The equinoctial

elements for the initial LEO and the target GEO are reported in Table 5. The LEO elements

refer to an orbit with an altitude of 500 km above the Earth surface, an inclination of 28.5 deg,

and a right ascension of the ascending node of 180 deg. The GEO elements refer to a circular,

equatorial orbit with a radius of about 42241 km. The Julian date at the beginning of the transfer is

JD0 = 2457377.5. The propulsion parameters are Tmax = 1.445 N and Isp = 1849.347748 s, while
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Figure 6. Time-optimal LEO-GEO transfer trajectory: thrust phases are colored red, eclipse phases are colored
gray.

the spacecraft initial mass is m0 = 1000 kg. The planetary constants for this problem are set equal

to those in [21, 22].

As for the previous case study, we start by evaluating the minimum TOF for the maneuver

using α = 0. The initial guess for the minimum-time problem is generated by tuning the guidance

scheme with ϕaz = 20 · π/180 rad, ϕel = 30 · π/180 rad and ξcut = 0. The resulting trajectory

converges in approximately 252 orbital revolutions, leading to a time of flight of 44.96 days and a

fuel consumption of 289.9 kg. The much higher number of revolutions compared to the GTO-GEO

transfer means that we are going to solve a more difficult optimization problem.

The solution to the time-optimal LEO-GEO problem involves 6 mesh iterations, with a number

of NLP variables equal to 252529 in the initial mesh and to 199897 in the final one. The total CPU

time taken by the optimization process is 28.3 minutes. The trajectory returned by the optimizer

is depicted in Fig. 6. It covers approximately 251 revolutions in terms of the true longitude. The

profile of the thrust direction vector components is shown in Fig. 7. Similarly to the time-optimal

GTO-GEO problem, the throttle control input η is always forced to 1 except during eclipses. The

Table 5. Equinoctial elements of the initial and the target orbit for the LEO-GEO transfer

Orbit p (km) f g h k
LEO 6878.140 0 0 -0.2539676 0
GEO 42241.095482 0 0 0 0
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Figure 7. Thrust direction vector profile for the time-optimal LEO-GEO transfer.

Table 6. Literature comparison for the LEO-GEO transfer

Source TOF (days) Fuel (kg) CPU time (min)
Ref. [21] 43.13 281.21 n/a
Ref. [22] 44.48 280.88 31.8a

This paper 42.37 276.70 28.3b

a Dual Intel Xeon E5-2860v3, 24 cores
b Intel Core I7-5600U, single core

optimal TOF is 42.37 days and the fuel consumption amounts to 276.70 kg.

The obtained results are compared with those in [21, 22] in Table 6. In these works, the min-

imum TOF for the maneuver is estimated via heuristic methods and a minimum-fuel problem is

solved in which the TOF is fixed and equal to the estimated TOF. As expected, the minimum TOF

resulting from the solution to (26)-(27) with α = 0 is lower than that in [21, 22]. Remarkably, the
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Figure 8. Fuel-optimal LEO-GEO transfer trajectory: thrust phases are colored red, eclipse phases are colored
gray, and optimal coast phases are colored blue.

fuel consumption is also lower than that reported in those papers. The total CPU time is close to

that obtained in [22] using hybrid differential dynamic programming. Note that we employed a

J2-perturbed model while Ref. [22] also models the effect of minor orbital perturbations (J3, J4,

third-body). However, the results in [22] are generated on a dual Intel Xeon E5-2860v3 worksta-

tion with a significant part of the workload parallelized over 24 cores, while we employed a laptop

processor operated on a single core. Therefore, the computational performance of the proposed

solution seems to compare very favorably with that in [22]. The CPU time for Ref. [21] is not re-

ported, because it lists the total computation time only for the last stage of its multi-phase method

(based on the average iteration time reported for the previous stages, we estimated a cumulative

CPU time of 47.4 minutes).

A time/fuel-optimal instance of the problem has been solved with α = 0.5 in (26)-(27), using

the same initial guess as that of the minimum-time problem. The obtained results are: TOF of

44.3 days, fuel consumption of 268.3 kg and CPU time of 113.7 min. Similarly to what observed

for the GTO-GEO case study, the time/fuel-optimal solution displays a TOF which is close to the

time-optimal one, while the fuel expenditure is lowered by approximately 8.4 kg.

Finally, in order to challenge the proposed method, we generated a 405 revolution trajectory

guess containing many thrust and coast arcs, by tuning the guidance scheme with ϕaz = 7 · π/180

rad, ϕel = 30 · π/180 rad and ξcut = 0.3. This initial guess displays a TOF of 76.7 days and a fuel
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Table 7. Results for the LEO-GEO transfer

Solution type TOF (days) Fuel (kg) CPU time (min)
Time-optimal 42.37 276.70 28.3
Mixed (α = 0.5) 44.33 268.27 113.7

Fuel-optimal 76.7 (fixed) 236.28 170
Fuel-optimal (ε=5 · 10−7) 76.7 (fixed) 236.29 311.5

consumption of 271.01 kg. A minimum fuel problem is set up by using α = 1 and constraining

the problem TOF to be equal to the guessed TOF. The problem involves 434304 NLP variables

on the initial mesh. Problems of this size are reportedly out of reach even for state-of-the-art

low-thrust trajectory optimization software such as Mystic [18] (according to [19], computation

time limits Mystic to about 250 revolutions for optimized trajectories before switching to the Q-

law). We solved the problem twice using the mesh tolerance levels ε = 5 · 10−6 and ε = 5 ·

10−7. The solution for ε = 5 · 10−6 features a fuel consumption of 236.28 kg and a CPU time

of 170 min. It involves 5 mesh iterations, with a number of NLP variables in the final mesh

equal to 290832. The solution for ε = 5 · 10−7 features a fuel consumption of 236.29 kg and a

CPU time of 311.5 min. The number of mesh iterations and of NLP variables in the final mesh

amount respectively to 9 and 364848. The trajectory obtained for ε = 5 · 10−7, reported in Fig. 8,

covers 405.45 orbital revolutions and cumulates 869 on-off throttle command transitions. The

corresponding thrust direction vector profile is shown in Fig. 9. Note that, for this example, the

solution provided by the initial guess is quite far from the optimal one. This demonstrates the

capability of the proposed method to effectively explore the solution space. Moreover, it highlights

the advantages brought by trajectory optimization with respect to heuristic approaches such as

the one in Section V, in terms of achievable performance. The LEO-GEO transfer results are

summarized in Table 7.

VII. Conclusions

A direct approach has been presented for the optimization of low-thrust orbit transfer trajecto-

ries under eclipse constraints. A specifically conceived parametrization of the orbital motion has

been employed in combination with a suitable eclipse smoothing technique in order to define a
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Figure 9. Thrust direction vector profile for the fuel-optimal LEO-GEO transfer.

flexible single-phase optimal control problem formulation. It has been shown that state-of-the-art

pseudospectral collocation algorithms are able to solve this problem effectively. The optimization

procedure is complemented by a Lyapunov guidance scheme that can be exploited to generate a

reasonable initial guess for the nonlinear solver in short time. The proposed approach is general

enough to encompass minimum-time, mimimum-fuel and mixed time/fuel-optimal control prob-

lems. Simulations on several relevant missions show that the new parametrization and optimiza-

tion scheme provide a remarkable improvement in terms of computational efficiency with respect

to comparable methods.
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