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Abstract. The filter synthesis problem for robust strict positive realness (RSPR) of

systems with lp parametric uncertainty is addressed. A general characterization of the so-

lutions of the RSPR problem in this framework is derived. The proposed characterization

is then exploited in order to devise synthesis procedures which yield polynomial or rational

filters of bounded degree with guaranteed SPR robustness margin in the l2, l∞, and l1

cases.
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1 Introduction

The invariance of the Strict Positive Realness (SPR) property of rational
functions with respect to numerator and denominator perturbations is rel-
evant to many problems in the analysis of absolute stability of nonlinear
Lur’e systems and the design of adaptive schemes (see, e.g., [1]-[14]). For
instance, convergence of several recursive identification algorithms or adap-
tive schemes is ensured provided that a suitable family of rational functions
enjoys the SPR property (see, e.g., [15]-[17]).

The key issue is the robust SPR (RSPR) problem. Given a set P of
polynomials and a region Λ of the complex plane, determine if there exists
a polynomial or a rational filter F such that each rational function P/F ,
P ∈ P , is strictly positive real over Λ. For instance, in the context of recursive
identification schemes, the set P can be viewed as a model of the uncertainty
about the true plant and Λ is the region of the complex plane where the
power spectral density of the regressor is concentrated.

Several results are available on the existence and construction of F for
different choices of P and Λ. In [4],[6],[7],[13],[14] the continuous-time and
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discrete-time robust SPR problems are considered when P is a polyhedron
(l∞ set) in the coefficient space, while in [8]-[10] the set P is described in
terms of root location regions and Λ is some subset of the complement of the
unit disk. A solution to the continuous-time RSPR problem for ellipsoidal
(l2) uncertainty is given in [18], and its discrete-time extension is dealt with in
[19]. An LMI characterization of polynomial RSPR filters for l∞ uncertainty
is proposed in [20].

In this paper, we consider the RSPR problem in the unified framework of
a set P given by an lp ball in coefficient space. Exploiting the results in [6],
it is first shown that the stability of the polynomials of P is a necessary and
sufficient condition for the existence of the sought filter F . Then, an analysis
based on an important result in [21] is performed, in order to provide a
complete characterization of the filters solving the RSPR problem.

In the l2 case, the proposed characterization leads to the synthesis proce-
dure in [18], which provides a rational solution whose degree is bounded by
that of the uncertain polynomial.

The cases of l∞ and l1 polynomial families are also investigated. The
general characterization is exploited in order to devise a numerical procedure
to compute a polynomial filter F with guaranteed robustness margin. More-
over, it is shown that when only the even (odd) coefficients of the polynomial
are uncertain, a solution of the RSPR problem is provided by a polynomial
filter which can be computed in closed form.

The paper is organized as follows. Section 2 contains the problem for-
mulation and some preliminary results. Section 3 presents a general result
characterizing the filters solving the RSPR problem. Section 4 recalls the
synthesis results for the l2 case. Section 5 considers the l∞ case and Section
6 discusses the l1 case. Section 7 reports some concluding comments.

Notation.
C : complex plane;
s ∈ C : complex number;
Re[s], Im[s] : real and imaginary parts of s;
arg[s] : argument of s;
P (s) : real polynomial;
∂P : degree of P (s);
[P (s)]o : polynomial containing only the odd powers of P (s);
Rn : real n-space;
v = (v1, . . . , vn)′ : vector of Rn (′ denotes transpose);
‖v‖p : p-norm of v;
H : set of Hurwitz polynomials;
RH∞ : set of stable proper real rational functions.

Basic definitions.

Definition 1 A rational function Φ(s) is said to be strictly positive real if
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1. Φ(s), Φ−1(s) ∈ RH∞;

2. Re [Φ(jω)] > 0 ∀ω ≥ 0.

Definition 2 For any norm ‖ · ‖p on R
n, the dual norm ‖ · ‖d

p is defined as

‖x‖d
p = max{x′y : ‖y‖p ≤ 1}.

In particular, we recall that ‖ · ‖d
2 = ‖ · ‖2, ‖ · ‖d

∞ = ‖ · ‖1, ‖ · ‖d
1 = ‖ · ‖∞.

2 Problem formulation

The robust SPR problem in the continuous-time case can be stated as follows
[4],[6]. Given a set of polynomials P , determine, if it exists, a polynomial (or
in general a rational function) F (s) such that for any polynomial P (s) ∈ P
the rational function P (s)/F (s) is strictly positive real over the closed right
half plane.
In this paper, we address the robust SPR problem for a set of polynomials
described by an lp ball in the coefficient space, centered at some given nominal
polynomial P0(s).

Definition 3 An lp set of polynomials of degree m is defined as

Pp
ρ :=

{

P (s) = P0(s) +

n
∑

i=1

qiPi(s) : ‖q‖p ≤ ρ

}

where P0(s), P1(s), . . . ,Pn(s) are such that ∂P0 = m, ∂Pi < m for all
i = 1, . . . , n, q = (q1 . . . qn)′ ∈ Rn is the parameter vector, and ρ > 0.

The robust SPR (RSPR) problem is stated next.

RSPR problem. Given the set Pp
ρ , determine a polynomial or rational

function F (s), if it exists, such that the SPR conditions

1.
P (s)

F (s)
,
F (s)

P (s)
∈ RH∞

2.

Re

[

P (jω)

F (jω)

]

> 0 ∀ω ≥ 0. (1)

hold for all P (s) ∈ Pp
ρ .

Since the numerator of a strictly positive real rational rational function is
Hurwitz, hereafter without loss of generality we assume that the polynomial
P0(s) is Hurwitz.
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Let ρ∗ denote the lp parametric stability margin of Pp
ρ , i.e., the maximal ρ

such that Pp
ρ cointains only Hurwitz polynomials [3].

ρ∗ = sup
P

p
ρ⊂H

ρ.

It is obvious that the condition ρ < ρ∗ is a necessary one for the RSPR
problem to have a solution. In the important paper [6], it was shown that
such condition is indeed also sufficient when the uncertain polynomial family
is described by a polyhedron in coefficient space (l∞ case). Since the key
element of the proof is the convexity of the polynomial set, the result can be
proven to hold in the general lp case, too.

Theorem 1 Consider the set Pp
ρ of uncertain polynomials and suppose that

ρ < ρ∗. Then, there exist a nonnegative integer M and a Hurwitz polynomial
R(s) of degree m + M such that the rational function

F (s) =
R(s)

(s + 1)M
(2)

solves the RSPR problem.

Proof. The result parallels that of Theorem 3.1 in [6], once the finite set
{ni(s)} is replaced by the convex set Pp

ρ . Indeed, let

φ(ω) =: sup
P∈P

p
ρ

arg[P (jω)] ; φ(ω) =: inf
P∈P

p
ρ

arg[P (jω)].

Since Pp
ρ is a convex degree-invariant set of Hurwitz polynomials, the func-

tions φ(ω) and φ(ω) are well defined and the following condition is true (see
[3])

φ(ω) − φ(ω) < π ∀ω ≥ 0. (3)

Now, introducing the function

φ∗(ω) :=
φ(ω) + φ(ω)

2
,

one has that the relation

| arg[P (jω)] − φ∗(ω)| <
π

2
∀ω ≥ 0 (4)

holds for each polynomial P (s) ∈ Pρ.
Thus, for the RSPR problem to be solved, it is enough to show existence of
a function F ∗(s) such that F ∗−1

(s) ∈ RH∞ and

arg[F ∗(jω)] = φ∗(ω).

Employing a series expansion as in [6], it can be shown that F ∗(s) can be
arbitrarily approximated via a rational function of the form (2) for suitable
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R(s) and M . ♦

Although quite interesting from a conceptual viewpoint, Theorem 1 does
not provide an efficient design method. Indeed, since F (s) is computed via a
procedure based on a series expansion [6], there is no a-priori knowledge of
the degree M of the filter F (s).

3 A characterization of the filters solving the
RSPR problem

In this section we introduce a new characterization of the RSPR problem
which yields efficient procedures for the synthesis of filters F with a-priori
bounded degree.
Let

G(s) :=

(

−P1(s)

P0(s)
, . . . ,−Pn(s)

P0(s)

)′

(5)

and introduce the two vector functions

R(ω) := Re[G(jω)],
I(ω) := Im[G(jω)].

(6)

It can be checked that the RSPR problem amounts to computing a function
Φ(s) such that

Φ(s), Φ−1(s) ∈ RH∞ (7)

and
Re [Φ(jω) (1 − q′G(jω))] > 0 ∀ω ≥ 0 ∀q : ‖q‖p ≤ ρ. (8)

Then, the filter F (s) is readily obtained via the relation

F (s) =
P0(s)

Φ(s)
.

The next result provides the sought characterization of the solutions of the
RSPR problem.

Theorem 2 All the rational filters solving the RSPR problem have the form

F (s) =
P0(s)

Φ(s)

where Φ(s) is a rational function such that

1. Φ(s) is strictly positive real;

2.

‖R(ω) − γΦ(ω)I(ω)‖d
p <

1

ρ
∀ω ≥ 0 (9)
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being

γΦ(ω) :=
Im[Φ(jω)]

Re[Φ(jω)]
. (10)

Proof. According to Definition 1, condition (7) and inequality (8) for q = 0
are equivalent to condition 1. For condition 2, observe first that (8) can be
rewritten as

(a) Re[Φ(jω)] > 0
(b) q′ [R(ω) − γΦ(ω)I(ω)] < 1

∀ω ≥ 0 ∀q : ‖q‖p ≤ ρ. (11)

Then, according to Definition 2, the duality property of norms implies that
(11(b)) holds for all q such that ‖q‖p ≤ ρ if and only if condition 2 holds. ♦

Remark 1 The above theorem is based on an important result in [21]. The
main difference is that here we consider the tangent of the argument of Φ(jω)
(i.e., γΦ(ω)) in place of the argument itself in [21] (see proof of Theorem 1,
part 2).

By Theorem 2, a central issue in the solution of the RSPR problem turns
out to be the characterization of the set of functions

Γp
ρ =

{

γ(ω) : ‖R(ω) − γ(ω)I(ω)‖d
p <

1

ρ
∀ω ≥ 0

}

. (12)

In particular, a solution exists if and only if there exists a strictly positive
real rational function Φ(s) such that γΦ(ω) ∈ Γp

ρ.
In the next sections, the set (12) and the existence of Φ(s) will be investi-
gated for ellipsoidal (l2), polytopic (l∞), and l1 polynomial families. At this
stage, we only introduce the general underlying idea for solving the RSPR
problem.
Assume that the necessary condition ρ < ρ∗ holds, which, according to The-
orem 1, implies that Γp

ρ is not empty, and introduce the set of frequencies

Ω0 = {ω ≥ 0 : I(ω) = 0}.

We note that for all ω /∈ Ω0, the inequality in (12) simply provides a con-
straint on γ(ω) of the form

γ(ω) < γ(ω) < γ(ω) (13)

where γ(ω) and γ(ω) are suitable functions which depend on ρ. For ω ∈ Ω0,
it can be easily seen that the inequality in (12) is implied by condition ρ < ρ∗

alone.
For each ω /∈ Ω0, the band defined by (13) narrows as ρ increases. Consider

Fig. 1, in which we assume Ω0 = {0}. In Fig. 1(a), the functions γ(ω)
and γ(ω) are depicted for a given ρ = ρ1 < ρ∗. Any solution of the RSPR
problem is given by a strictly positive real Φ(s) such that γΦ(ω) belongs to
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Figure 1: (a): γ(ω) and γ(ω) for ρ = ρ1 < ρ∗; (b): γ(ω) and γ(ω) for ρ = ρ2

(ρ1 < ρ2 < ρ∗).

the band defined by γ(ω) and γ(ω). In this case, it is easily verified that
Φ(s) = 1 solves the RSPR problem, since γΦ(ω) = 0 is within the band.
According to Theorem 2, such a solution leads to the filter F (s) = P0(s),
which is the nominal polynomial itself. It is clear that such a filter is likely
to perform well for small uncertainty, i.e., for values of ρ sufficiently smaller
than ρ∗. For larger values of ρ, this is no longer guaranteed as shown in Fig.
1(b), where ρ = ρ2 > ρ1 is considered. In this case a different solution must
be found (see dashed line in Fig. 1(b)).
Now, introduce the function

γ∗(ω) = arg min
γ

‖R(ω) − γI(ω)‖d
p , ω /∈ Ω0 (14)

which is at each ω the value of γ(ω) minimizing the left hand side of the
inequality in (12).
Clearly, the inequality in (12) holds for γ∗(ω) for all ω /∈ Ω0. This fact sug-
gests the following procedure for obtaining a solution of the RSPR problem:
look for a strictly positive real rational function Φ(s) such that γΦ(ω) is as
close as possible to γ∗(ω) for all ω /∈ Ω0. This general idea is exploited
in the next sections in order to devise synthesis methods for l2, l∞, and l1
uncertainty.

4 l2 uncertainty case

Assume p = 2 and suppose ρ < ρ∗. According to (12), we need to characterize
the set Γ2

ρ, i.e., the set

Γ2
ρ =

{

γ(ω) : ‖R(ω) − γ(ω)I(ω)‖2
2 <

1

ρ2
∀ω ≥ 0

}

(15)
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We have the following result [18].

Proposition 1 Let ρ < ρ∗. Then, the following statements hold.

1. Γ2
ρ is the set of γ(ω) such that

γ(ω) < γ(ω) < γ(ω) ∀ω /∈ Ω0 (16)

where

γ(ω) = γ∗(ω) −
√

∆(ω)

‖I(ω)‖2
2

, γ(ω) = γ∗(ω) +

√

∆(ω)

‖I(ω)‖2
2

(17)

being

γ∗(ω) =
R′(ω)I(ω)

‖I(ω)‖2
2

(18)

and

∆(ω) = [R′(ω)I(ω)]
2 − ‖I(ω)‖2

2

[

‖R(ω)‖2
2 −

1

ρ2

]

. (19)

2. Γ2
ρ is nonempty.

The characterization of γ∗(ω) in (18) is exploited in [18] in order to derive the
closed-form expression of a rational filter F (s) solving the RSPR problem
for all ρ < ρ∗. The basic idea is to derive a positive real rational function
Φ∗(s) such that γΦ∗(ω) = γ∗(ω) almost everywhere in ω ≥ 0, i.e., for all
ω /∈ Ω0, and then to apply a slight perturbation to Φ∗(s) in order to obtain
an SPR rational function Φ(s) such that

γ(ω) < γΦ(ω) < γ(ω) ∀ω /∈ Ω0.

Although the proposed approach can provide a solution of the RSPR prob-
lem under the only condition ρ < ρ∗, in the sequel we will report the related
main results under a simplifying assumption concerning the vector function
I(ω) in (6), which can be shown to be violated only in non-generic cases. We
refer the reader to [18] for a complete discussion.

Assumption 1. Let I(ω) 6= 0 for all ω > 0, i.e., Ω0 = {0}.

Let us introduce the polynomial

Π(s) =
n

∑

i=1

P0(s)Pi(−s) [P0(−s)Pi(s)]o . (20)

The following property pertains to Π(s).
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Proposition 2 Suppose Assumption 1 holds. Then, Π(s) can be factorized
as follows:

Π(s) = AsrΠ̄1(s)Π̄2(−s) (21)

where A is a real constant, r ≥ 1 is an integer and Π̄1(s) and Π̄2(s) are
uniquely determined monic Hurwitz polynomials.

Remark 2 From the expression (20) of Π(s) it is easily verified that Π̄1(s)
contains P0(s) as a factor.

Once the factorization (21) is performed, consider the functions

Φ∗
e(s) =

Π̄1(s)

Π̄2(s)
(22)

defined for even r, and

Φ∗
o(s) =

Π̄1(s)

Π̄2(s)
ssgnA (−1)(r−1)/2

(23)

defined for odd r. The following result relates Φ∗
e(s) and Φ∗

o(s) to γ∗(ω).

Proposition 3 Let ρ < ρ∗ and suppose Assumption 1 holds. Then,

γ∗(ω) =

{

γΦ∗

e
(ω) r even

γΦ∗

o
(ω) r odd

. (24)

It can be shown that Φ∗
e(s) and Φ∗

o(s) are indeed positive real. Thus, it
is possible to perform a small perturbation of their coefficients in order to
obtain strictly positive real rational functions. This leads to the main result
of [18], which provides the solution of the RSPR problem for the l2 case.

Theorem 3 Given the ellipsoidal set P2
ρ , let ρ < ρ∗ and suppose Assumption

1 holds. Then, for sufficiently small positive ε and δ, the rational function

Φ(s) =



















Φ∗
e(s)(1 + δs)∂Π̄2−∂Π̄1 for even r

Φ∗
o(s)

(

s + ε

s

)sgnA (−1)(r−1)/2

·(1 + δs)∂Π̄2−∂Π̄1−sgnA (−1)(r−1)/2

for odd r
(25)

satisfies conditions 1 and 2 of Theorem 2, i.e. the filter

F (s) =
P0(s)

Φ(s)

solves the robust SPR problem for P2
ρ .

Theorem 3 provides the solution of the RSPR problem via the factorization
of Π(s) in Proposition 2. This allows for the determination of an upper bound
on the degree of denominator DF (s) of F (s) [18].
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Figure 2: (a): γ(ω) and γ(ω) (solid), γ∗(ω) (dotted), γΦ(ω) (dashed); (b)
Nyquist plot of Φ∗

e(s).

Corollary 1 Let the assumptions in Theorem 3 be fulfilled. Then,

∂DF ≤ m − 2 for even r
∂DF ≤ m − 1 for odd r.

(26)

Example 1 Consider the ellipsoidal set of polynomials

P2
ρ =

{

P (s) = (s + 1)3 + q1s
2 + q2s : ‖q‖2 ≤ ρ

}

.

The vector functions in (6) are given by

R(ω) =

[

−ω2(3 − ω2) ω2(1 − 3ω2)
]′

(1 − 3ω2)2 + ω2(3 − ω2)2

I(ω) =

[

−ω(1 − 3ω2) − ω3(3 − ω2)
]′

(1 − 3ω2)2 + ω2(3 − ω2)2
.

Hence, the set P2
ρ satisfies Assumption 1. According to Proposition 2, we

have

Π(s) = −s2(s + 1)4(s2 − 0.78s + 3.54)(s2 − 0.22s + 0.28)

and therefore A = −1, r = 2 and

Π1(s) = (s + 1)4;
Π2(s) = (s2 + 0.78s + 3.54)(s2 + 0.22s + 0.28).

Since r is even, according to (22) we have

Φ∗
e(s) =

(s + 1)4

(s2 + 0.78s + 3.54)(s2 + 0.22s + 0.28)
.
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In this case, Φ∗
e(s) is indeed strict positive real and therefore Theorem 3 leads

to the rational filter

F (s) =
(s2 + 0.78s + 3.54)(s2 + 0.22s + 0.28)

s + 1
.

solving the RSPR problem for ρ < ρ∗ =
√

7.
The function γΦ∗

e
(ω) = γ∗(ω) is shown in Fig. 2(a) together with γ(ω) and

γ(ω) for ρ = 2.63. Fig. 2(b) reports the Nyquist plot of Φ∗
e(s) making its

SPR property clear.

5 l∞ uncertainty case

In order to find a solution to the RSPR problem for the class P∞
ρ , according

to the characterization in Theorem 2 we need to compute an SPR rational
function Φ(s) such that γΦ(ω) belongs to the set

Γ∞
ρ =

{

γ(ω) : ‖R(ω) − γ(ω)I(ω)‖1 <
1

ρ
∀ω ≥ 0

}

. (27)

Notice that the inequality in (27) is nonsmooth as well as the function γ∗(ω)
in (14), thus making the problem more difficult than in the l2 case.
Nevertheless, a numerical filter design procedure which exploits Theorem 2
can be derived. Such procedure allows for the computation of a filter F (s)
of prescribed structure, e.g., a polynomial of degree n, solving the RSPR
problem with guaranteed robustness margin, i.e., for all ρ < ρF with ρF ≤ ρ∗.
Moreover, the maximization of ρF can be carried out through a suitable
tuning of the filter coefficients.
Although the characterization in Theorem 2 covers the case of the generic
perturbation structure in (3), we restrict our discussion to the case in which
the coefficients of P (s) ∈ P∞

ρ are perturbed independently, i.e., we consider
the uncertain family

P∞
ρ :=

{

P (s) = P0(s) +
n

∑

i=1

qiâi−1s
i−1 : ‖q‖∞ ≤ ρ

}

where (â0, . . . , ân−1)
′ ∈ R

n is a given vector. Clearly, this corresponds to
choosing Pi(s) = âi−1s

i−1.
In this case, it is easily seen that the inequality in (27) can be rewritten as

Ke(ω) |Re[P0(jω)] + γΦ(ω)Im[P0(jω)]|
+Ko(ω) |Im[P0(jω)] − γΦ(ω)Re[P0(jω)]| <

1

ρ
∀ω ≥ 0,

(28)

where

Ke(ω) =
1

|P0(jω)|2
n−1
∑

i=0, i even

âiω
i, Ko(ω) =

1

|P0(jω)|2
n−1
∑

i=0, i odd

âiω
i.

(29)
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It has already been pointed out that for sufficiently small ρ, the filter F (s) =
P0(s), i.e., Φ(s) = 1, is indeed a solution to the RSPR problem. Motivated
by this observation, we introduce a class of polynomial filters of degree n
which is obtained by performing a perturbation of the coefficients of P0(s).
To this purpose, let

F (s; θ) = P0(s) +

n−1
∑

i=0

θis
i (30)

where θ = (θ0, . . . , θn−1)
′ ∈ R

n is a tunable parameter vector. Accordingly,
define

Φ(s; θ) =
P0(s)

F (s; θ)
. (31)

The related function γΦ(ω; θ) = Im[Φ(jω; θ)]/Re[Φ(jω; θ)] in (10) can be
written as

γΦ(ω; θ) =
Im[P0(jω)]Xe(ω; θ) − Re[P0(jω)]Xo(ω; θ)

1 + Re[P0(jω)]Xe(ω; θ) + Im[P0(jω)]Xo(ω; θ)
(32)

where

Xe(ω; θ) =
1

|P0(jω)|2
n−1
∑

i=0, i even

θi(jω)i

Xo(ω; θ) =
1

j|P0(jω)|2
n−1
∑

i=0, i odd

θi(jω)i.

(33)

Moreover, the set of θ ∈ Rn such that Φ(s; θ) is SPR is given by

ΘΦ+ =

{

θ ∈ R
n : inf

ω≥0
[1 + Re[P0(jω)]Xe(ω; θ) + Im[P0(jω)]Xo(ω; θ)] > 0

}

.

(34)
In particular, the condition θ ∈ ΘΦ+ implies that F (s; θ) is Hurwitz.
Let us define

ρF (θ)−1 = sup
ω≥0

(Ke(ω) |Re[P0(jω)] + γΦ(ω; θ)Im[P0(jω)]|

+Ko(ω) |Im[P0(jω)] − γΦ(ω; θ)Re[P0(jω)]|)
(35)

when γΦ(ω; θ) is as in (32)-(33). From (28), (35) and Theorem 2, we get that
the filter F (s; θ) solves the RSPR problem for P∞

ρ for all ρ < ρF (θ) provided
that θ ∈ ΘΦ+.
The maximum perturbation norm ρF (θ) for which the filter F (s; θ) is guar-
anteed to provide a solution can be maximized with respect to the filter
parameters through the solution of the optimization problem

θ∗ = arg sup
θ∈ΘΦ+

ρF (θ). (36)

Such problem can be approached via a generic constrained search, initialized
at θ = (0, . . . , 0)′, and involves, according to (35) a sweep along the ω axis
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at each step.
It should be noted that ρF (θ∗) is in general a conservative lower bound of
the parametric stability margin ρ∗. Moreover, its computation can be made
difficult for the possible presence of local maxima, since the optimization
problem (36) is non-convex in general. Nevertheless, a measure of the per-
formance of the filter F (s; θ∗) can be obtained by comparing ρF (θ∗) with
ρ∗, which can be computed explicitly [3]. Indeed, as remarked before, the
condition ρ < ρ∗ is necessary and sufficient for the RSPR problem to have
a solution (not necessarily a polynomial one) [6].

Example 2 Consider the polynomial family P∞
ρ in (5) defined by

P0(s) = s6 + 2s5 + 7.2s4 + 7.2s3 + 4.2s2 + 2.2s + 0.4

and

(â0, â1, â2, â3, â4, â5) = (0.2, 0.05, 0.05, 0.08, 0, 0).

The application of the proposed procedure yields

θ∗ = (−0.1212, 0,−0.0808, 0,−0.0404, 0)′

and ρ(θ∗) = 1.0590. Hence, the filter

Fθ∗(s) = s6 + 2s5 + 7.1596s4 + 7.2s3 + 4.1192s2 + 2.2s + 0.2788

solves the RSPR problem for all ρ < ρ(θ∗) = 1.0590. It can be shown that
ρ(θ∗) is indeed the actual l∞ stability margin ρ∗.

5.1 l∞ uncertainty: odd (even) perturbation case

A stronger synthesis result can be given under the additional condition that
only the odd (even) coefficients of P (s) are perturbed. Indeed, in this case,
a filter F (s) solving the RSPR problem for all ρ < ρ∗ can be provided in
closed form in the shape of a polynomial of degree n.
Let us introduce the following two subsets of P∞

ρ

P∞,e
ρ =

{

P (s) ∈ P∞
ρ : âi = 0, i even

}

(37)

P∞,o
ρ =

{

P (s) ∈ P∞
ρ : âi = 0, i odd

}

(38)

which correspond to the odd and even perturbation case, respectively, and
the two functions

γe(ω) =
Im[P0(jω)]

Re[P0(jω)]
; γo(ω) = −Re[P0(jω)]

Im[P0(jω)]
. (39)

The following result is obtained.
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Lemma 1 Let ρ < ρ∗. Then, for all ω > 0,

γ∗(ω) =

{

γe(ω) for P∞,e
ρ

γo(ω) for P∞,o
ρ .

(40)

Proof. It easily follows from (28), by observing that Ke(ω) (resp. Ko(ω))
turns out to be zero. ♦

Indeed, there exist two rational functions Φ∗
e(s) and Φ∗

o(s) such that γe(ω) =
γΦ∗

e
(ω) and γo(ω) = γΦ∗

o
(ω), respectively. Introduce the two polynomials

Πe(s) = −sP0(s)[sP0(−s)]o
Πo(s) = P0(s)[P0(−s)]o.

By the properties of the real and imaginary parts of Hurwitz polynomials [3],
it can be checked that Πo(s) and Πe(s) admit the following factorization

Πe(s) = −s2P0(s)

en
∏

i=1

(s2 + ω2
e,i) (41)

Πo(s) = −sP0(s)

en−1
∏

i=1

(s2 + ω2
o,i) (42)

where

en =
n − nmod 2

2
.

Note that the sets
Ω0

e = {ωe,1, . . . , ωe,en}
Ω0

o =
{

0, ωo,1, . . . , ωo,en−1

}

contain the frequencies at which Re[P0(jω)] = 0 and Im[P0(jω)] = 0, respec-
tively. Introduce the two rational functions

Φ∗
e(s) =

P0(s)
∏en

i=1(s
2 + ω2

e,i)

Φ∗
o(s) =

P0(s)

s
∏en−1

i=1 (s2 + ω2
o,i)

.

The next result relates such functions to γe(ω) and γo(ω). The proof is similar
to that of Lemma 6 in [18] and basically follows from expressions (41) and
(42).

Theorem 4 Let ρ < ρ∗. Then, γe(ω) = γΦ∗

e
(ω) and γo(ω) = γΦ∗

o
(ω). More-

over, Φ∗
e(s) and Φ∗

o(s) are positive real.
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Since Φ∗
e(s) and Φ∗

o(s) are shown to be positive real, suitable strictly positive
real rational functions can be obtained via a small perturbation of their
coefficients. Indeed, consider the two rational functions

Φe(s) =
P0(s)

∏en

i=1(s
2 + 2ζωe,is + ω2

e,i)(1 + δs)nmod 2

Φo(s) =
P0(s)

(s + ε)
∏en−1

i=1 (s2 + 2ζωo,is + ω2
o,i)(1 + δs)(n−1)mod 2

and the corresponding two polynomial filters

Fe(s) =

en
∏

i=1

(s2 + 2ζωe,is + ω2
e,i)(1 + δs)nmod 2

Fo(s) = (s + ε)

en−1
∏

i=1

(s2 + 2ζωo,is + ω2
o,i)(1 + δs)(n−1)mod 2

(43)

where ε, ζ, and δ are sufficiently small positive constants. We have the
following result.

Theorem 5 Let ρ < ρ∗. Then, the RSPR problem for the set P∞,e
ρ (resp.

P∞,o
ρ ) is solved by the polynomial filter Fe(s) (resp. Fo(s)) in (43).

Proof (sketch): First, Φe(s) and Φo(s) can be proven to be strictly positive
real. Moreover, the parameters ε, ζ and δ can be chosen such that γΦe(ω)
and γΦo(ω) are arbitrarily close to γe(ω) and γo(ω), respectively. Then, the
result follows by Lemma 1. ♦

6 l1 uncertainty case

Let us assume p = 1. The set Γ1
ρ is given by

Γ1
ρ =

{

γ(ω) : ‖R(ω) − γ(ω)I(ω)‖∞ <
1

ρ
∀ω ≥ 0

}

. (44)

It is easily checked that the inequality in (44) can be rewritten as

|Ri(ω) − γ(ω)Ii(ω)| <
1

ρ
∀ω ≥ 0 ∀i = 1, . . . n. (45)

As in the l∞ case, let us assume that the coefficients of the uncertain poly-
nomial are perturbed independently, i.e.,

P1
ρ :=

{

P (s) = P0(s) +
n

∑

i=1

qiâi−1s
i−1 : ‖q‖1 ≤ ρ

}

. (46)
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By a straightforward manipulation, it turns out that γ(ω) belongs to Γ1
ρ if

and only if

Ji(γ(ω), ω) <
1

ρ
∀ω ≥ 0, ∀i = 0, . . . , n − 1 (47)

where

Ji(γ, ω) =















|âi|ωi|Re[P0(jω)] + γIm[P0(jω)]|
|P0(jω)|2 i even

|âi|ωi|Im[P0(jω)] − γRe[P0(jω)]|
|P0(jω)|2 i odd.

(48)

The characterization in (47)-(48) can be exploited numerically the same way
as in the l∞ case in order to obtain a polynomial filter with guaranteed ro-
bustness margin. Let us define F (s; ϑ) as in (30) and introduce the functional

ρF (θ)−1 = sup
ω≥0

max
i=0,...,n−1

Ji(γΦ(ω; θ), ω), (49)

where γΦ(ω; θ) is as in (32).
Again, from Theorem 2, we get that the filter F (s; θ) solves the RSPR
problem for P1

ρ for all ρ < ρF (θ) provided that θ ∈ ΘΦ+, and hence a sub-
optimal filter F (s; θ∗) solving the l1 RSPR problem for all ρ < ρF (θ∗) ≤ ρ∗

can be obtained through the non-convex optimization problem (36) with
ρF (θ) as in (49).
Finally, it is worth to note that also in the l1 case, a polynomial filter F (s) of
degree n solving the RSPR problem for all ρ < ρ∗ can be obtained provided
that only the even (odd) coefficients of the polynomial P (s) are affected by
uncertainty.
Introduce the two sets

P1,e
ρ =

{

P (s) ∈ P1
ρ : âi = 0, i even

}

(50)

P1,o
ρ =

{

P (s) ∈ P1
ρ : âi = 0, i odd

}

(51)

and let γe(ω) and γo(ω) be as in (39).
The following result parallels Lemma 1.

Lemma 2 Let ρ < ρ∗. Then, for all ω > 0,

γ∗(ω) =

{

γe(ω) for P1,e
ρ

γo(ω) for P1,o
ρ .

(52)

Proof. It directly follows from (44)-(48). ♦

It is then clear that a synthesis result as Theorem 5 can be derived.

Theorem 6 Let ρ < ρ∗. Then, the RSPR problem for the set P1,e
ρ (resp.

P1,o
ρ ) is solved by the polynomial filter Fe(s) (resp. Fo(s)) in (43).
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7 Conclusion

The continuous-time robust SPR (RSPR) synthesis problem for lp uncertain
polynomials has been considered in this paper. It has been shown that a
necessary and sufficient condition for the problem to have a solution is that all
the polynomials in the uncertain family are Hurwitz. Under this assumption,
a complete frequency domain characterization of the filters solving the RSPR
problem has been given. Such a characterization has been exploited in order
to derive synthesis procedures for l2, l∞, and l1 uncertainty, which provide
filters with degree bounded by that of the uncertain polynomial. In the l2
case, a closed form rational solution is devised. For l∞ and l1 uncertain
polynomials, a numerical procedure is proposed to compute a polynomial
filter with guaranteed robustness margin. In the last two cases, it has been
shown that the sought filter can be computed in closed form provided that
only the even (odd) coefficients of the uncertain polynomial are perturbed.
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