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Abstract—This paper addresses L2-stability analysis of
discrete-time continuous piecewise affine systems described in
input-output form by linear combinations of basis piecewise
affine functions. The proposed approach exploits an equivalent
representation of these systems as the feedback interconnection
of a linear system and a diagonal static block with repeated
scalar nonlinearity. This representation enables the use of analysis
results for systems with repeated nonlinearities based on integral
quadratic constraints. This leads to a sufficient condition for
L2-stability that can be checked via the solution of a single
linear matrix inequality, whose dimension grows linearly with
the number of basis piecewise affine functions defining the
system. Numerical examples corroborate the proposed approach
by providing a comparison with an alternative approach based
on the computation of piecewise polynomial storage functions.

Index Terms—Continuous piecewise affine systems, linear
fractional representations, L2-stability analysis, linear matrix
inequalities.

I. INTRODUCTION

Piecewise affine (PWA) systems are collections of lin-

ear/affine dynamics defined over a polyhedral partition of

the system domain. Since PWA maps possess universal ap-

proximation properties [1], PWA systems represent an at-

tractive model structure for system identification, combining

the potential to approximate any nonlinear dynamics with

the property of being locally linear [2]. While discontinuous

PWA maps are more suited to model hybrid systems and

systems with abrupt changes, approximation of continuous

nonlinear dynamics calls for piecewise affine model structures

embedding this property in their definition. One example is

represented by hinging hyperplane (HH) functions, defined as

the sum of a given number of hinge functions, each consisting

in either the maximum or the minimum of two affine functions

[3]. The class of HH functions is equivalent to the class of

continuous PWA functions that can be expressed in Chua’s

canonical representation [4], [5], but there exist continuous

PWA functions that cannot be expressed in this form. A

universal representation of all continuous PWA functions can

be obtained by linear combinations of Basis PWA (BPWA)

functions [6]. An n-dimensional BPWA function is the maxi-

mum or minimum of n+ 1 affine functions. Hinge functions

are therefore a particular case of BPWA functions. For a given

level of accuracy, BPWA functions may approximate a given

nonlinear map with fewer parameters than HH functions.
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This paper focuses on L2-stability analysis of basis piece-

wise affine autoregressive systems with exogenous inputs (BP-

WARX), i.e. discrete-time nonlinear regression models based

on the use of BPWA functions. While identification of these

models is tackled in [6], to the best of the authors’ knowledge

their stability analysis has never been addressed before. Using

arguments from the dissipativity theory for nonlinear systems

[7], a possible approach is to build a state-space realiza-

tion of the BPWARX system, and then look for a suitable

piecewise quadratic (PWQ) or piecewise polynomial (PWP)

storage function ensuring bounded L2-gain of the resulting

PWA model. Computation of storage functions can be tackled

via convex optimization using linear matrix inequality (LMI)

[8], [9] and sum-of-squares (SOS) [10] techniques. However,

these approaches become computationally impracticable as the

number of regions of the PWA model and, more importantly,

the number of possible transitions between regions, grow.

This is unfortunately likely to occur when PWA models are

obtained as state-space realizations of BPWARX systems.

Approaches where the nonlinearities are pulled out of the

system description, and characterized by means of sector

bounded conditions and/or sector identities, are often applied

in analysis problems to trade off computational complexity

against conservatism, see, e.g., [11, Chap. 2], and more

recently [12]. A similar approach is taken in this paper for L2-

stability analysis of BPWARX systems. First, an equivalent

linear fractional representation (LFR) of BPWARX systems

is derived. It is shown that a given BPWARX system can

be represented as the feedback interconnection of a linear

system and a diagonal static block with repeated scalar non-

linearity. Using this representation, a sufficient condition for

L2-stability of BPWARX systems is derived by exploiting

analysis results for systems with repeated nonlinearities based

on integral quadratic constraints (IQCs) [13]. The sufficient

condition can be checked via a single LMI, whose dimension

grows linearly with the number of BPWA functions defining

the BPWARX system. The proposed approach is tested on

numerical examples, and compared with the one in [10] based

on the computation of PWQ/PWP storage functions. It is

shown that, when the number of regions of the equivalent PWA

model is small, the two approaches yield comparable results

in terms of L2-stability margin (though the approach of this

paper requires much smaller computation time). Conversely,

when the number of regions grows, the approach in [10] fails

due to out-of-memory issues caused by the huge size of the

optimization problems involved, while the approach of this



paper is still computationally affordable.

It is worthwhile to stress that, thanks to the universal

representation properties of BPWA functions, the proposed

approach is actually applicable to the whole class of discrete-

time continuous PWA systems admitting an equivalent input-

output representation [14]. The contribution of this paper

extends our preliminary work in [15], where the focus was on

L2-stability analysis of hinging hyperplane ARX (HHARX)

systems. HHARX systems are indeed a subclass of the broader

class of BPWARX systems.

The paper is structured as follows. The LFR of BPWARX

systems is derived in Section II. Section III describes the

proposed approach for L2-stability analysis of BPWARX

systems. Numerical examples, including the comparison with

the approach in [10], are reported in Section IV. Finally,

conclusions are drawn in Section V.

Notation and preliminaries

The sets of real and nonnegative integer numbers are

denoted by R and Z
≥0, respectively. The standard notations

for matrices and vectors are A = {aij} and x = {xi},

respectively. The m× n zero matrix is represented as 0m×n,

while the n-dimensional zero vector is 0n. The n×n identity

matrix is denoted In. The Kronecker product of matrices A

and B is denoted by A ⊗ B, while diag{. . .} denotes block

diagonal matrix composition.

The Lp space consists of all discrete-time signals u with

finite Lp-norm ‖u‖Lp
:=

(
∑∞

k=0 ‖u(k)‖
p
p

)
1
p , where ‖ · ‖p

denotes the p-norm of a vector. The L2,e space is defined

as L2,e := {u : u[0,τ ] ∈ L2, ∀τ ∈ Z
≥0}, where u[0,τ ] is the

truncated signal

u[0,τ ](k) :=

{

u(k) if 0 ≤ k ≤ τ

0 if k > τ.
(1)

The discrete-time unit impulse and unit step functions are

denoted δ(k) and 1(k), respectively. For a real discrete-time

sequence l(k), k ∈ Z
≥0, l̂(z) denotes its zeta transform.

The set of proper transfer matrices with all poles inside the

open unit circle is denoted by RH∞. If ε > 0, a scalar

function f : R → R is said to belong to the sector [0, ε]
if f(x)(εx − f(x)) ≥ 0 for all x ∈ R. Furthermore, let us

introduce the function ν : R → R

ν(x) := max{0, x}, (2)

which is the non-odd nonlinearity belonging to the sector [0, 1]
depicted in Fig. 1. The following property holds:

max{x1, x2} = x1 +max{0, x2 − x1}

= x1 + ν(x2 − x1) ∀x1, x2 ∈ R.
(3)

Finally, we define the vector function NQ : RQ → R
Q as

NQ(x) := [ ν(x1) . . . ν(xQ) ]
T . (4)

Notice that NQ can be seen as a static multivariable input-

output diagonal operator in which the scalar nonlinearity ν in

Fig. 1 is repeated Q times.

ν(x)

x1

1

Fig. 1. Scalar nonlinearity repeated in the diagonal static block NQ.

II. REPRESENTATIONS OF BPWARX SYSTEMS

We consider single-input single-output discrete-time con-

tinuous PWA systems described by BPWARX models [6].

In this section, the class of BPWARX systems is first intro-

duced. Then, we develop a systematic procedure to cast any

BPWARX system into LFR form.

A. BPWARX systems

Let k ∈ Z
≥0 be the time index. A BPWARX system is

described by the equation

y(k) = θT0 φ(k)

+
∑M

i=1σi max{0, θTi,1φ(k), θ
T
i,2φ(k), . . . , θ

T
i,Ni

φ(k)},
(5)

where, for fixed orders na and nb, the regression vector is

φ(k) := [ y(k − 1) . . . y(k − na)

u(k) u(k − 1) . . . u(k − nb) v(k) ]
T ,

(6)

and u(k) ∈ R and y(k) ∈ R are the system input and output

at time k, respectively. It is assumed that u(k − ℓ) = 0 and

y(k − ℓ) = 0 if k − ℓ < 0. In (6), v(k) = 1(k) is a fictitious

input introduced to manage the affine terms of the model. The

parameters of model (5) are given by

θ0 ∈ R
na+nb+2

θi,j ∈ R
na+nb+2, j = 1, . . . , Ni, i = 1, . . . ,M

σi ∈ {−1, 1}, i = 1, . . . ,M,

(7)

where M ≥ 1 and Ni ≥ 1, i = 1, . . . ,M .

Remark 1: As a special case, when Ni = 1 for all i,

equation (5) describes the class of HHARX systems [3].

Remark 2: A given BPWARX system can have multiple

representations of the form (5). For example, by (3), we have

that y(k) = θT0 φ(k) + max{0, θT1,1φ(k)} and y(k) = (θ0 +
θ1,1)

Tφ(k) + max{0,−θT1,1φ(k)} represent the same system.

B. LFR of BPWARX systems

It is well-known that interconnections consisting of a finite

number of linear time-invariant systems and static nonlineari-

ties can be always represented in LFR form as in Fig. 2 (see,

e.g., [16]), where the block L contains the linear dynamics

and all nonlinearities are pulled out into the static block N .

In Fig. 2, ũ(k) and ỹ(k) are the system input and output at

time k ∈ Z
≥0, respectively, while z̃(k) and w̃(k) are internal



signals. In order to devise such a representation for BPWARX

systems (5), we first need to introduce the following lemma.

Lemma 1: Given x1, x2, . . . , xN ∈ R, let w0 = 0, xN+1 =
0, and consider the recursion

zj = xj − xj+1 + wj−1

wj = max{0, zj} = ν(zj)
(8)

for j = 1, . . . , N . Then,

wN = max{0, x1, x2, . . . , xN}. (9)

Proof. We first prove the statement

zj = max{x1, . . . xj} − xj+1 (10)

by induction. Clearly, (10) holds for j = 1. Assuming that it

holds for the generic index j, we have

wj = max{0,max{x1, . . . xj} − xj+1}

zj+1 = xj+1 − xj+2 +max{0,max{x1, . . . xj} − xj+1}.

Then, by (3):

zj+1 = max{xj+1,max{x1, . . . xj}} − xj+2

= max{x1, . . . xj+1} − xj+2.

It turns out that zN = max{x1, . . . xN}, and hence (9). �

We now derive the dynamic linear part L and the static

nonlinear part N describing the LFR form of the BPWARX

system (5). For each i = 1, . . . ,M , we define recursively

z̃i,j(k) = (θi,j − θi,j+1)
Tφ(k) + w̃i,j−1(k)

w̃i,j(k) = max{0, z̃i,j(k)}, j = 1, . . . , Ni,
(11)

with w̃i,0(k) = 0 and θi,Ni+1 = 0na+nb+2. Then, by

Lemma 1, we can rewrite (5) as:

y(k) = θT0 φ(k) +
∑M

i=1σiw̃i,Ni
(k). (12)

By defining:

z̃i(k) := [ z̃i,1(k) . . . z̃i,Ni
(k) ]

T
,

w̃i(k) := [ w̃i,1(k) . . . w̃i,Ni
(k) ]

T
,

Θi := [ (θi,1 − θi,2) . . . (θi,Ni−1 − θi,Ni
) θi,Ni

] ,

Γi :=

[

01×(Ni−1) 0
INi−1 0(Ni−1)×1

]

,

(13)

we get from (11) that

z̃i(k) = ΘT
i φ(k) + Γiw̃i(k) (14)

and using (4):

w̃i(k) = NNi
(z̃i(k)). (15)

Finally, by grouping:

z̃(k) :=
[

z̃1(k)
T . . . z̃M (k)T

]T
,

w̃(k) :=
[

w̃1(k)
T . . . w̃M (k)T

]T
,

Θ := [ Θ1 . . . ΘM ] ,

Γ := diag{Γ1, . . . ,ΓM},

Σ :=
[

01×(N1−1) σ1 01×(N2−1) σ2 . . .

. . . 01×(NM−1) σM

]

,

(16)

L

N

ũ(k)ỹ(k)

w̃(k)z̃(k)

Fig. 2. LFR of an interconnected system consisting of a finite number of
linear time-invariant systems and static nonlinear maps.

we have

z̃(k) = ΘTφ(k) + Γw̃(k), (17)

and by (12),

y(k) = θT0 φ(k) + Σw̃(k). (18)

Moreover,

w̃(k) = NQ(z̃(k)), (19)

where Q =
∑M

i=1 Ni. We have thus obtained that the BP-

WARX system (5) can be represented as in Fig. 2, where

ũ(k) := [ u(k) v(k) ]T and ỹ(k) := y(k). The dynamic linear

part L is defined by (17)-(18), while the static nonlinearity N
is given by NQ as per (19). The transfer functions that form

the linear block L can be easily computed and are reported

in equations (20) and (21) displayed in Table I, where θ0 is

decomposed as

θ0 = [ − α1 . . . − αna
β0 β1 . . . βnb

γ0 ]T , (22)

and

d(z−1) := 1 + α1 z
−1 + . . .+ αna

z−na . (23)

We recall that the input-output behaviors of the BPWARX

system (5) are obtained by setting v(k) = 1(k). In the

following, to the purpose of deriving the sufficient condition

for L2-stability, we will exploit the property that such v

belongs to the L2,e space.

III. L2-STABILITY ANALYSIS

The following standard notion of L2-stability is considered

in this paper [17].

Definition 1: A discrete-time system with input ũ and

output ỹ is finite-gain L2-stable from ũ to ỹ if there exists

a nonnegative constant γ such that, for all ũ ∈ L2,e,

‖ỹ[0,τ ]‖L2
≤ γ ‖ũ[0,τ ]‖L2

, ∀τ ∈ Z
≥0. (24)

In the above definition, it is implicitly assumed that the

output vanishes at ũ = 0. Otherwise, a bias term should be

added to the right-hand side of (24).

The LFR derived in the previous section can be exploited

in order to assess L2-stability for the BPWARX system (5).

In particular, the following result holds.

Theorem 1: If the LFR (17)-(19) is finite-gain L2-stable

from ũ = [ u v ]T to ỹ, then the BPWARX system (5) is

finite-gain L2-stable from u to y.



TABLE I
TRANSFER FUNCTIONS OF THE LINEAR PART L OF FIG. 2.

Y (z) =
β0 + β1 z

−1 + . . .+ βnb
z−nb

d(z−1)
U(z) +

γ0

d(z−1)
V (z) +

Σ

d(z−1)
W̃ (z) := Lyu(z)U(z) + Lyv(z)V (z) + Lyw̃(z)W̃ (z) (20)

Z̃(z) = ΘT





















z−1Lyu(z)

...
z−naLyu(z)

1
z−1

...
z−nb

0





















U(z) + ΘT



















z−1Lyv(z)

...
z−naLyv(z)

0
0

...
0
1



















V (z) +











































ΘT























z−1Lyw̃(z)

...
z−naLyw̃(z)

01×Q

01×Q

...
01×Q

01×Q























+ Γ











































W̃ (z)

:= Lz̃u(z)U(z) + Lz̃v(z)V (z) + Lz̃w̃(z)W̃ (z)

(21)

Proof. All input-output behaviors of the BPWARX system (5)

are obtained from the LFR (17)-(19) by setting v(k) = 1(k).
Since 1 ∈ L2,e, the result holds. �

The L2-stability analysis will be carried out under the

following assumption.

Assumption 1: All transfer functions forming the linear

block in the LFR, i.e., Ly,u, Ly,v , Ly,w̃, Lz̃,u, Lz̃,v , Lz̃,w̃

defined by (20)-(21), belong to RH∞.

Remark 3: Assumption 1 boils down to the requirement

that d(z−1) in (23) is a Schur polynomial. Such an assumption

may not be as restrictive as it seems. Indeed, as pointed out

in Remark 2, the same system admits different equivalent

representations, some of which may satisfy Assumption 1,

while others may not. See [15] for an example in the special

case of HHARX systems.

To proceed, let us consider the feedback interconnection

depicted in Fig. 3, where Lz̃,w̃ is the transfer function matrix

from w̃ to z̃ of the derived LFR, defined as in (21). The

following is a standard result in stability theory (see, e.g, [17]).

Theorem 2: Under Assumption 1, if the loop in Fig. 3 is

finite-gain L2-stable from η := [ ηT1 ηT2 ]T to ζ := [ ζT1 ζT2 ]T ,

then the LFR in Fig. 2 is finite-gain L2-stable from ũ to ỹ.

To assess L2-stability of the loop in Fig. 3, which in

turn implies L2-stability of the BPWARX system (5) by

Theorems 1 and 2, the results in [13] can be used, since the

block NQ is composed of repeated scalar non-odd monotoni-

cally nondecreasing sector nonlinearities. Such results require

the choice of a set of r ≥ 1 positive scalar sequences lq(k)
with finite L1-norm, q = 0, . . . , r − 1, where r is chosen

arbitrarily. These sequences act as multipliers to reduce the

+

+

+

+

Lz̃,w̃

NQ
η1

η2

ζ1

ζ2

Fig. 3. Feedback configuration for stability analysis.

conservatism of the stability condition. The following theorem

specializes to the problem at hand the LMI stability criterion

originally developed in [13] for the case of continuous-time

systems.

Theorem 3: Consider the loop in Fig. 3, with Lz̃,w̃ defined in

(21), and assume Lz̃,w̃ ∈ RH∞. Let lq(k), q = 0, . . . , r−1, be

scalar positive sequences with finite L1-norm ρq := ‖lq‖L1
.

Let (A,B,C,D) be a state space realization of the transfer

function matrix Ψ(z)
[

Lz̃,w̃(z)
I

]

, where

Ψ(z) =







I −I
0 I
I −I
0 I

Υ(z) −Υ(z)
0 I






, (25)

and Υ(z) := [ l̂1(z) . . . l̂r(z) ]
T ⊗ I . If there exist real sym-

metric matrices Λq := {λqij
} ∈ R

Q×Q, q = 0, . . . , r−1, with

positive entries, Q×Q real symmetric matrices G+ := {g+ij},

G− := {g−ij}, and P satisfying the following conditions:

g+ij ≥ 0, g−ij ≥ 0, ∀i, j = 1, . . . , Q

g−ii = 0, ∀i = 1, . . . , Q

g+ij − g−ij ≤ 0, ∀i, j = 1, . . . , Q, i 6= j

g+ii ≥

Q
∑

j=1

j 6=i

(g+ij + g−ij) +

Q
∑

j=1

r−1
∑

q=0

ρqλqij
, ∀i = 1, . . . , Q

[

ATPA−P ATPB

BTPA BTPB

]

+ [C D ]
T
W [C D ] < 0, P > 0,

(26)

where

W :=









0 G+ 0 0 0 0
G+ 0 0 0 0 0
0 0 0 −G− 0 0
0 0 −G− 0 0 0

0 0 0 0 0 −XT

0 0 0 0 −X 0









(27)

and X := [ Λ0 . . . Λr−1 ], then the loop in Fig. 3 is finite-gain

L2-stable from η to ζ. �

For fixed multipliers lq(k), q = 0, . . . , r − 1, the sufficient

condition for L2-stability given in Theorem 3 can be checked

via the solution of the LMI problem (26) in the unknowns

G+, G−, P and Λq , q = 0, . . . , r − 1.



Remark 4: Combined with Theorems 1 and 2, Theorem 3

provides a sufficient condition for L2-stability of the BP-

WARX system (5) based on a generalization of the analysis in

[13], which is developed for all repeated scalar monotonically

nondecreasing nonlinearities belonging to a finite sector [0, ε].
Hence, a source of conservatism is introduced in the proposed

approach by treating the static nonlinearity ν in Fig. 1 as a

general sector nonlinearity when applying Theorem 3. Another

source of conservatism comes from considering the fictitious

input v in the construction of the LFR of Fig. 2. L2-stability

of the LFR indeed implies to take into account all signals

v ∈ L2,e, while the input-output behaviors of the BPWARX

system (5) are obtained from the LFR with the particular

choice v(k) = 1(k). The conservatism of the proposed L2-

stability condition can be reduced by exploiting the scalar

positive sequences lq of Theorem 3. Possible choices for these

sequences are the discrete-time counterparts of the functions

suggested in [13]. An example is shown in Section IV.

IV. NUMERICAL EXAMPLES

In this section, the L2-stability condition for BPWARX sys-

tems derived previously, is tested on three numerical examples.

We also compare the performance of the proposed approach

with that achieved using PWQ/PWP storage functions and a

state-space representation of the BPWARX system, as in [10].

It is worthwhile to stress that, in the realization process, the

number of regions of the equivalent state-space PWA model

turns out to be typically much greater than the number of

BPWA functions defining the BPWARX system. This has

an impact on the computational requirements of the two

approaches. While the L2-stability condition of this paper can

be checked via the solution of a single LMI, whose dimension

grows linearly with the number of BPWA functions defining

the BPWARX system, the computation of PWQ/PWP storage

functions requires to consider all possible transitions between

regions.

Example 1: Let us consider the HHARX system (i.e., Ni =
1 ∀i = 1, . . . ,M ) characterized by M = 4, na = 3, nb = 1,

and parameters

θ0 = [−0.8 −0.5 −0.3 −0.1 −0.7 0.1 ]
T

[ θ1,1 θ2,1 θ3,1 θ4,1 ] =





α 0.1 0.4 0.4
0.5 0.2 0.3 0.7
0.1 0.5 0.3 0.3
−0.1 0.3 −0.1 0.2
1 −0.1 0.3 −0.4
0.2 −0.5 0.1 0.3





[ σ1 σ2 σ3 σ4 ] = [ 1 1 −1 −1 ] ,

where α ≥ 0 is a scalar parameter. This system satisfies

Assumption 1, since all the zeros of the polynomial

d(z−1) = 1 + 0.8 z−1 + 0.5 z−2 + 0.3 z−3 (28)

belong to the open unit circle. We aim at computing an

estimate of the set of positive α for which the system is L2-

stable. More specifically, we perform a gridding over α with

step equal to 0.01, and apply Theorem 3 in order to compute

an interval contained in the L2-stability domain of the system.

The conditions of Theorem 3 are tested using the SeDuMi

[18] solver with CVX [19] as parser. The following choices

are made for the multipliers lq(k):

a) No multipliers (e.g., r = 1, l0(k) = 0);

b) l0(k) = δ(k), lq(k) = (0.005q)k, q = 1, . . . , r − 1, for

different values of 1 ≤ r < 200. Note that lq(k) ≥ 0 for

all k, and ρq = ‖lq‖L1
= (1− 0.005q)−1.

With the choice a), we manage to prove L2-stability via

Theorem 3 for α ∈ [0, 0.50], while the choice b) yields a

stability interval α ∈ [0, 1.02] for r = 2, while no significant

improvement is obtained for r ≥ 3. In the latter case, the

solution of the LMI problem of Theorem 3 involves 114

scalarized variables, 69 constraints, and takes about 0.6 s

solver time and 1.48 s CVX time on a 3.6 GHz Intel i7-7700

processor.

Then, we compare the L2-stability region obtained via

the proposed approach with that computed using the SOS

relaxations presented in [10]. To this purpose, an equivalent

PWA state-space representation with 16 regions is obtained

using [20], and finiteness of the L2-gain is tested using PWP

storage functions and polynomial relaxations. In order to

obtain a comparable result, i.e., finite L2-gain for α ∈ [0, 1.12],
a 4th order PWP storage function with 4th order polynomial

relaxations has to be used (see Theorem 3.3 in [10] for details).

The SOS problems are solved using Mosek (SeDuMi shows

numerical problems on these tests) with YALMIP [21] as SOS

problem parser, and results in 500640 scalarized variables and

315424 constraints. On the same hardware as above, solver

time is 71.2 s (plus 2825 s YALMIP parsing time). The test

fails for α > 1.12. The use of PWQ storage functions always

results in infeasible SOS problems.

Figure 4 shows the plot of the gain

γ(τ) :=
‖y[0,τ ]‖L2

‖u[0,τ ]‖L2

, τ ∈ Z
≥0, (29)

for different values of α and different input signals u ∈ L2,e.

As expected, γ(τ) is bounded for α = 0.5 and α = 1.01,

which are contained in the estimated L2-stability domain.

Conversely, it turns out that α = 1.53 does not belong to

the actual stability domain, since γ(τ) is unbounded when the

input is taken as u(k) = sin(π2 k). Notice that this cannot be

concluded from the unit step response, as the corresponding

γ(τ) remains bounded.

Example 2: We now consider the following HHARX

system, characterized by M = 8, na = 3, nb = 1, with

θ0 = [−0.8 −0.5 −0.3 −0.1 −0.7 0.1 ]
T

[ θ1,1 ... θ8,1 ] =





α 0.1 0.1 0.3 0.2 0.1 0.2 0.3
0.4 0.2 0.3 0.2 0.3 0.3 0.3 0.7
0.3 0.5 0.3 0.5 0.3 0.4 0.3 0.3
−0.2 0.3 −0.1 0.3 −0.1 0.3 −0.1 0.2
1 −0.1 0.3 −0.1 0.3 −0.1 0.3 −0.4
0.3 −0.5 0.1 −0.5 0.1 −0.5 0.1 0.3





[ σ1 ... σ8 ] = [ 1 1 1 1 −1 −1 −1 −1 ] .

With the same choice of the multipliers as in the previous

example, the proposed approach is able to assess an L2-

stability interval α ∈ [0, 1.25]. The corresponding LMI prob-

lem consists of 288 scalarized variables and 207 constraints.

Solver time is 0.6 s and total CVX time is 1.61 s. An equivalent

PWA state-space representation consists of 240 regions. This

makes infeasible to apply the results in [10] with PWQ/PWP

storage functions, as the formulation of the SOS problem

results in out-of-memory issues.



0 100 200 300 400 500

-60

-40

-20

0

20

40

60

80

100

120

τ

γ
(τ

)
(d

B
)

Fig. 4. Example 1: Plot of the gain γ(τ) for α = 0.5 (green), α = 1.01 (blue)
and α = 1.53 (red) using u(k) = 1(k) (dash-dot) and u(k) = sin(π

2
k)

(solid).

Example 3: Let us consider the following BPWARX

system, inspired by [6]:

y(k) = α [−0.5(y(k − 1) + u(k − 1))

+ max{0, y(k − 1), u(k − 1)}

− max{0,−y(k − 1),−u(k − 1)}] ,

where α > 0. Using the results in [6], it can be shown that

such a system cannot be represented by an HHARX model

structure, regardless of the number of hinges used. On the

other hand, the system is of the form (5) with na = nb = 1,

M = 2, N1 = N2 = 2, and

θ0 = α [−0.5 0 −0.5 0 ]
T

[ θ1,1 θ1,2 θ2,1 θ2,2 ] = α

[

1 0 −1 0
0 0 0 0
0 1 0 −1
0 0 0 0

]

[ σ1 σ2 ] = [ 1 −1 ] .

Using the proposed approach with the same choice of the

multipliers as in Example 1, L2-stability can be assessed for

α ∈ [0, 0.65].

V. CONCLUSIONS

A LFR of BPWARX systems was derived in this paper

to enable the use of IQC-based analysis results for systems

with repeated nonlinearities. Thanks to this transformation,

a sufficient condition for L2- stability of BPWARX systems

was presented. The proposed approach was compared via

numerical examples with an alternative approach based on the

computation of PWQ/PWP storage functions. It was shown

that our approach is less computationally demanding than the

latter, and succeeds in providing certifications of L2-stability

even when the latter fails due to the intractable size of the

optimization problems involved. When PWQ/PWP storage

functions could be computed, the conservatism of the two

approaches turned out to be comparable.

Future work aims at reducing the conservatism of the

proposed approach (e.g., by incorporating in the stability

conditions more information about the specific nonlinearities

considered), as well as extending it to (subclasses of) discon-

tinuous PWA systems.
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