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a b s t r a c t

This work deals with the problem of estimating a photovoltaic generation forecasting model in
scenarios where measurements of meteorological variables (i.e., solar irradiance and temperature)
at the plant site are not available. A novel algorithm for the estimation of the parameters of the
well-known PVUSA model of a photovoltaic plant is proposed. Such a method is characterized by
a low computational complexity, and efficiently exploits only power generation measurements, a
theoretical clear-sky irradiance model, and temperature forecasts provided by a meteorological service.
The proposed method is validated on real data.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A major challenge in the integration of renewable energy
sources into the grid (Schiffer, Zonetti, Ortega, Stankovic, Sezi, &
Raisch, 2016) is that power generation is intermittent, difficult
to control, and strongly dependent on the variation of weather
conditions. For this reason, forecasting of renewable distributed
generation has become a fundamental requirement in order to
reliably manage conventional power plant operation, grid balanc-
ing, real-time unit dispatching (Kim, Oh, Moore, & Ahn, 2016),
demand constraints (Ishizaki et al., 2016), and energy market
requirements. In this respect, renewable generation forecasts on
different time horizons are of special interest to various players
that operate in the active grid, in particular to Distribution Sys-
tem Operators (DSO) and Transmission System Operators (TSO)
(see Albuyeh (2009), Denholm and Margolis (2007a, 2007b) and
references therein).

Concerning photovoltaic (PV) power generation
(Coimbra, Kleissl, & Marquez, 2013), most contributions, focus
on the problem of solar irradiance prediction (Inman, Pedro, &
Coimbra, 2013; Kang & Tam, 2015; Perez, Kivalov, Schlemmer,
Hemker, Renné, & Hoff, 2010). To tackle this problem, several
approaches based on Artificial Neural Networks (ANNs) (Capizzi,
Napoli, & Bonanno, 2012; Wu & Chan, 2011) or Support Vector
Machines (Ragnacci, Pastorelli, Valigi, & Ricci, 2012) can be found
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in the literature. Alternatively, classical linear time series predic-
tion methods are used in Bacher, Madsena, and Nielsen (2009),
Reikard (2009), where the considered time series is typically the
global horizontal irradiance (GHI) (Wong & Chow, 2001). GHI
forecasts are typically used along with temperature forecasts in
a simulation model of the PV plant (Patel, 2006) in order to
calculate generated power predictions. In all cases, computing
reliable forecasts from predicted meteorological variables hinges
upon the availability of an accurate model of the plant, be it
physical or estimated from data.

Unfortunately, in many common scenarios, neither a plant
model, nor direct on-site measurements of solar irradiance and
other meteorological variables (e.g., temperature) are available.
This is always the case with a DSO dealing with hundreds or
thousands of heterogeneous, independently owned and operated
PV plants; in this case, the only available data consist of gen-
erated power measurements provided by smart meters, and of
irradiance and temperature forecasts provided by a meteoro-
logical service. The problem of forecasting power generation in
this case is addressed in Tao, Shanxu, and Changsong (2012) by
means of a neural network and in Pepe, Bianchini, and Vicino
(2016, 2017) using a parametric model. In these approaches,
however, further information on the cloud cover index at the
plant site is assumed to be available. In Bianchini, Paoletti, Vi-
cino, Corti, and Nebiacolombo (2013a, 2013b), a heuristic method
for the estimation of the parameters of the well-known PVUSA
model (Dows & Gough, 1995) based on theoretical clear-sky irra-
diance is presented, while in Pepe, Bianchini, and Vicino (2018),
a recursive procedure based on the clear-sky criteria proposed
in Reno and Hansen (2016) is devised. However, the former
approach does not allow for capturing possible parameter vari-
ations or seasonal drifts, and moreover both approaches require
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trial-and-error procedures in order to manually tune a number
of algorithm parameters whose values may vary significantly
according to the climate zone.

In this paper, a novel approach to the problem of estimating
the parameters of the PVUSA model in the partial information
case is presented. The only historical data used by the method
consist of generated power, and temperature forecasts. Our ap-
proach is based on three tests to be performed on generated
power data in order to detect portions of such data that were
generated under clear-sky conditions. The information contained
in such portions is then exploited in a recursive parameter esti-
mation algorithm in combination with theoretical clear-sky irra-
diance data provided by a suitable model. The method proposed
in this paper improves over (Bianchini et al., 2013a, 2013b; Pepe
et al., 2018), since it is able to adapt to parameter variations
and requires the tuning of a single threshold coefficient whose
physical role is well defined.

The paper is structured as follows: in Section 2 the mod-
eling tools are introduced; in Section 3 the proposed clear-sky
detection tests are developed; the model estimation procedure
is presented in Section 4. Experimental validation results are
reported in Section 5, and conclusions are drawn in Section 6.

2. Preliminaries

A PV plant can be efficiently modeled using the PVUSA model
(Dows & Gough, 1995), which expresses the instantaneous gen-
erated power as a function of irradiance and air temperature
according to the equation:

P = µ1I + µ2I2 + µ3IT , (1)

where P , I , and T are the generated power (kW), irradiance
(W/m2), and air temperature (◦C), respectively, and µ =

[µ1 µ2 µ3]
′ is the model parameter vector. It is important to

notice that model (1) is linear in the parameters. For the purpose
of this work, it is useful to express (1) in the form

P = µ1 · α(I, T ) · I, (2)

where α(I, T ) can be written as a function of the ratios

η2 = µ2/µ1, η3 = µ3/µ1 (3)

as

α(I, T ) = 1+ η2I + η3T . (4)

From (2), it is apparent that µ1 represents the main power/
irradiance gain of the plant, while α(I, T ) in (4) can be seen as
correction term. In this respect, it is worth noticing that the ratios
η2 and η3 in (3) are characterized by well-established variability
ranges among different PV technologies (see Dows and Gough
(1995)). Such ranges are given by:

η2 ∈

[
η
2
, η2

]
=

[
−2.5× 10−4,−1.9× 10−5

]
,

η3 ∈

[
η
3
, η3

]
=

[
−4.8× 10−3,−1.7× 10−3

]
.

(5)

This property will be used in the proposed estimation procedure.
The PVUSA model can be fruitfully exploited for the purpose of
computing forecasts of generated power on the basis of predicted
meteorological variables. Indeed, once a correct estimate µ̂ of
the parameter vector is available, a reliable power generation
forecast P̂ can be obtained by substituting predicted irradiance
Î and temperature T̂ , provided by a meteorological service, into
the model equation (1). Similarly, a clear-sky generation forecast
P̂cs can be obtained by using the theoretical irradiance Ics at the
plant location, as provided by a suitable model, along with a
temperature forecast.

Despite its simplicity, very good accuracy is obtained from the
PVUSA model when µ is estimated using measured irradiance
and temperature data via, e.g., standard least squares fitting (see,
e.g., Bianchini et al. (2013b)).

A DSO that manages a high number of independent genera-
tion facilities may not have access to time series of irradiance
and temperature measured on the premises of each plant, while
power generation data are always available through meters. In
order to estimate model parameters, replacing the measured val-
ues of I and T with forecasts Î and T̂ provided by a meteorological
service is not a viable solution, due to the fact that forecasting
errors on the irradiance are in general too large. On the contrary,
temperature forecasts are quite reliable and can be used in place
of actual measurements (see Bianchini et al. (2013a, 2013b) for
details).

In this paper, a theoretical model for the global clear-sky
irradiance Ics on a given surface is also needed. Any of the several
different models in the literature (Ineichen, 2006) is suitable for
the proposed technique. In the experimental part of this work,
the Heliodon simulator model (Meinel & Meinel, 1976) is used.
We refer the reader to Section 2.2 of Bianchini, Pepe, and Vicino
(2019) for details.

3. Clear-sky data detection

In this paper, the following key idea is exploited for the pur-
pose of estimating the parameters of the PVUSA model (1) of a
PV plant without resorting to on-site irradiance measurements.
Given a time series composed of generated power measurements
and temperature forecasts (or measurements, if available), we
propose three tests to be performed on the data in order to detect
portions of the power curve which have been generated under
a clear-sky condition; this allows for fitting the parameters of
the PVUSA model to such data by using the theoretical clear-sky
irradiance in place of the actual measured irradiance. This section
deals with the derivation of such tests.

In view of (5), suitable bounds can be derived on α(I, T ) and P
in the PVUSA model (2)–(4). Indeed, from (4) and (5), it is easily
checked that

α(I, T ) ≤ α(I, T ) ≤ α(I, T ), (6)

where

α(I, T ) =

{
1+ η

2
I + η

3
T , if T ≥ 0

1+ η
2
I + η3T , if T < 0

(7)

α(I, T ) =

{
1+ η2I + η3T , if T ≥ 0
1+ η2I + η

3
T , if T < 0.

(8)

Moreover, for realistic values of I and T , it always holds that
α(I, T ) > 0 and α(I, T ) < 1. From (6) and (2), the following bound
on P is obtained:

µ1 · I · α(I, T ) ≤ P ≤ µ1 · I · α(I, T ). (9)

Let us now consider a time series {P(j), I(j), T (j)} of the variables
in (1), where j represents a discrete time index. The increment of
P(j) can be expressed as

∆P(j) = P(j)− P(j− 1)
= µ1 [I(j− 1)∆α(j)+∆I(j)α(I(j), T (j))] ,

(10)

where ∆I(j) = I(j) − I(j − 1) and ∆α(j) = α(I(j), T (j)) − α(I(j −
1), T (j− 1)).

Let ∆T (j) = T (j) − T (j − 1). Taking into account (7)–(8), it is
easily checked that the following bounds on ∆α(j) hold:

∆α(j) ≤ ∆α(j) ≤ ∆α(j), (11)
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where[
∆α(j)
∆α(j)

]
= Q (j)

[
∆I(j)
∆T (j)

]
(12)

and the matrix Q (j) depends on the signs of ∆I(j) and ∆T (j)
according to the following table:

Q (j) ∆T (j) ≥ 0 ∆T (j) < 0

∆I(j) ≥ 0
[
η
2

η
3

η2 η3

] [
η
2

η3
η2 η

3

]
∆I(j) < 0

[
η2 η3
η
2

η
3

] [
η2 η3
η
2

η3

]
In view of (10), this allows to derive the following bounds on
∆P(j):

µ1δP (j) ≤ ∆P(j) ≤ µ1δP (j), (13)

where[
δP (j)
δP (j)

]
= R(j)

[
I(j− 1)
∆I(j)

]
(14)

and the matrix R(j), depending on the sign of ∆I(j), is given by

R(j)

∆I(j) ≥ 0
[
∆α(j) α (I(j), T (j))
∆α(j) α (I(j), T (j))

]
∆I(j) < 0

[
∆α(j) α (I(j), T (j))
∆α(j) α (I(j), T (j))

]
The bounds (9) and (13) allow to devise the sought tests. Let
us consider a time interval J , and the following associated time
series

PJ =
{
{Pm(j), T (j), Pcs(j)}, j ∈ J

}
, (15)

where, for each time instant j, Pm(j) represents the measured
plant power reported by meters, T (j) is a temperature forecast
(or measurement), and Pcs(j) is the clear-sky generated power
predicted by a PVUSA model characterized by given values of the
parameters µ1, µ2, and µ3, i.e.,

Pcs(j) = µ1Ics(j)α
(
Ics(j), T (j)

)
. (16)

Clearly, by (9),

µ1 · Ics(j) · α
(
Ics(j), T (j)

)
≤ Pcs(j)

≤ µ1 · Ics(j) · α
(
Ics(j), T (j)

)
.

(17)

Let

jmax = argmax
j∈J
{Ics(j)}, (18)

Icsmax = Ics(jmax), (19)

Pcs
max = Pcs(jmax) = µ1Icsmaxα

(
Icsmax, T (jmax)

)
. (20)

The quantities Icsmax, jmax, and Pcs
max define, respectively, the max-

imum clear-sky irradiance within the given time window J ,
the time index for which this maximum value occurs, and the
predicted clear-sky generated power at jmax. Note that, since the
sensitivity of power with respect to temperature is quite small in
general, it can be assumed that the actual power peak within a
given time window always corresponds to the irradiance peak.

Normalizing (17) with respect to Pcs
max and taking (6) into

account yields the following bounds on the ratio Pcs(j)
Pcsmax

:

γ
1
(j) ≤

Pcs(j)
Pcs
max
≤ γ 1(j), (21)

where

γ
1
(j) =

α(Ics(j), T (j))
α(Icsmax, T (jmax))

·
Ics(j)
Icsmax

,

γ 1(j) =
α(Ics(j), T (j))

α(Icsmax, T (jmax))
·
Ics(j)
Icsmax

.

(22)

It is important to observe that (21)–(22) define a condition to
be satisfied by the clear-sky power time series provided that the
reference model is given by (1), and that such bounds are inde-
pendent of the model parameters. Condition (21) can therefore
be exploited as a first test in order to single out candidate time
windows J in which power data have been generated under
clear-sky conditions. To this aim, given the time series {Pm(j), T (j),
j ∈ J }, the ratio Pm(j)

Pm(jmax)
is compared against the bounds (22),

yielding the following test:

T1 γ
1
(j) ≤

Pm(j)
Pm(jmax)

≤ γ 1(j), ∀j ∈ J . (23)

The satisfaction of T1 is in general not sufficient to classify power
data within J as having been generated under a clear-sky con-
dition. Specifically, if the sky is partially cloudy during the time
interval J , the measured power may heavily oscillate, but could
remain quite close to the clear-sky power at the maximum (Reno
& Hansen, 2016), thus satisfying (23). To overcome this issue, a
further condition on the normalized increment of the power time
series is derived. Let δcsP (j) and δ

cs
P (j) be defined by (14) evaluated

for I(j) = Ics(j) and ∆I(j) = ∆Ics(j) = Ics(j) − Ics(j − 1). The
increment ∆Pcs(j) = Pcs(j)− Pcs(j− 1) satisfies

µ1δ
cs
P (j) ≤ ∆Pcs(j) ≤ µ1δ

cs
P (j) (24)

by (13). Normalizing (24) with respect to Pcs
max, the following

bounds on the normalized increment ∆Pcs(j)
Pcsmax

are obtained:

γ
2
(j) ≤

∆Pcs(j)
Pcs
max
≤ γ 2(j), (25)

where

γ
2
(j) =

δcsP (j)
α(jmax)

·
1

Icsmax

γ 2(j) =
δ
cs
P (j)

α(jmax)
·

1
Icsmax

.

(26)

Note that the bounds (25)–(26), similar to (21)–(22), do not de-
pend on the model parameters. Condition (25) provides a second
criterion for classifying a time window J of measured power data
points as clear-sky. The following test is therefore introduced:

T2 γ
2
(j) ≤

∆Pm(j)
Pm(jmax)

≤ γ 2(j), ∀j ∈ J , (27)

where ∆Pm(j) is the increment of the measured power, i.e.,
∆Pm(j) = Pm(j)− Pm(j− 1).

Tests T1 and T2 detect deviations in the shape of the nor-
malized power curve from the clear-sky condition caused by
cloudiness in different scenarios. However, due to normalization,
such conditions may turn out to be fulfilled on a given time
window J when the corresponding data are generated under per-
fectly uniform cloudiness, i.e., when the actual irradiance satisfies
I(j) = βIcs(j) ∀j ∈ J , where 0 < β < 1 is a constant that
represents a uniform cloud cover factor (see Kimura and Stephen-
son (1969)). If the data collected within such a time window are
used to perform a model parameter adaptation step in a recursive
estimation procedure, the algorithm may tend to underestimate
the power/irradiance gain of the plant at such step. This fact
may be detrimental when a long series of data collected under
uniform cloudiness is processed. To mitigate this effect, a further
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test is introduced. Suppose that a current estimate µ̂ of the model
parameters is available, and let P̂cs(j) be the current estimate of
the generated power under clear-sky conditions, computed via
(16) using µ̂. Let P̂cs

max be the peak value of P̂cs(j) in J , i.e., P̂cs
max =

P̂cs(jmax). Provided that T1 and T2 are passed by the data in time
window J , the following further condition is introduced, which
involves a comparison of the maximum currently predicted clear-
sky power P̂cs

max with the corresponding generated power Pm(jmax)
as follows:

T3
Pm(jmax)

P̂cs
max

≥ 1− ϵ, (28)

where 0 < ϵ < 1 is a parameter chosen by the designer,
typically a number slightly higher than 0. T3 has the specific role
of detecting, under the condition that T1 and T2 are satisfied,
whether the peak value of measured power within the considered
time window lies above a given fraction of the clear-sky power
currently estimated by the model. Condition (28) is satisfied
when (a) the model is currently underestimating clear-sky power,
or (b) the current model is overestimating the generated power
by a small amount, or (c) uniform cloudiness is present within
the given time window, so that generation is marginally lower
than the clear-sky power currently predicted by the model. With
the exception of the latter case, the simultaneous satisfaction of
T1, T2, and T3 requires that the model parameters be adapted in
order to fit the measured power series with the predicted one
within J .

Remark 1. The parameter ϵ plays a key role in detecting whether
the clear-sky curve provided by the model matches or under-
estimates power data satisfying T1 and T2, which are related
to the shape of the normalized power curve. Setting this value
very close to zero allows for good adaptation when the model
is underestimating the clear-sky power (for this reason it is
advisable to choose an underestimate of µ1 as the initial guess in
the estimation procedure, as detailed in the next section). Higher
values, on the other hand, allow for adjusting the model when it
is overestimating; the latter case is very important for capturing
possible slow parameter drifts as well as seasonal variations in
the accuracy of the theoretical clear-sky model. However, in-
creasing ϵ may cause adaptation to long series of data generated
under uniform cloudiness. Actually, it can be shown (see Remark
1 in Bianchini et al. (2019)) that under uniform cloud cover factor
β , T3 is passed when β approximately satisfies

β ⪆ µ̂1 ·
1000
Pnom

· (1− ϵ) , (29)

where Pnom is the nominal plant power and µ̂1 is the current
estimate of µ1 The relationship (29) provides an interpretation
of the parameter ϵ and represents a possible guideline for tuning
such parameter on the basis of the minimum value of the cloud
cover factor for which the designer allows data generated under
uniform cloudiness to be considered for parameter adaptation.

4. Model estimation

According to the observations in the previous sections, we
now introduce the proposed PVUSA plant model estimation
method, which yields an on-line update of the parameter vector
estimate µ̂ by relying only on the information contained on a
time series composed by measured power Pm and forecast (or
measured) temperature T . The model estimation procedure is
recursive, and combines tests T1, T2, T3 with a standard Recursive
Least-Squares (RLS) algorithm using a dynamical time window.
The following definitions are instrumental for building up the
procedure:

• k: present time index;
• d: present day;
• Id = [kd, kd]: time interval corresponding to light hours in

day d, i.e., Ics(k) > 0 for all kd ≤ k ≤ kd;
• Jk,l: set of time indices corresponding to a time window of

given length l ending at k, i.e., Jk,l = {k− l+ 1, . . . , k};
• µ̂(k): estimate of the parameter vector at time k, being µ̂(0)

the initial guess;
• Ics(j): theoretical clear-sky solar irradiance at time step j,

computed according to a suitable model for the plant site;
• T (j): temperature forecast (or measurement, if available) at

time j at the plant site, provided by a meteorological service;
• Pm(j): measured generated power at time j;
• D(j) = {Pm(j), T (j), Ics(j)}: data sample at time j;
• D(J ) = {D(j), j ∈ J }: data set pertaining to time window

J ;
• ϵ: fixed threshold value (0 < ϵ < 1);
• lmin: minimum time window length.

The estimation algorithm is constructed as follows. The procedure
is reset on each day d at time k = kd. The current parameter
estimate µ̂(kd) is initialized with the last estimate obtained on
day d − 1. An initial data set D(Jk,lmin ) is constructed at time
k = kd + lmin − 1 corresponding to an initial time window Jk,lmin
of length lmin. If D(Jk,lmin ) does not pass T1, T2 and T3, then the
procedure is reset at time k = kd + 1. Otherwise (i.e., if D(Jk,lmin )
is recognized as generated under clear-sky), a new data sample
D(k) is acquired at each following step k and added to the current
data set D(Jk,l), incrementing the length of the time window Jk,l
by one. Then, T1, T2, and T3 are performed on D(Jk,l). If tests are
passed, then further data samples are added to the data set until
one of the tests fails (or the end of the day is reached) at some
time k′. When this occurs, the data set D(Jk′−1,l−1) is deemed to
be generated under clear-sky conditions and an RLS adaptation
step is performed using such data in order to obtain an updated
parameter estimate µ̂(k′). Then, the algorithm is reset at time
k = k′ and repeated. A detailed description of the procedure is
reported in Algorithm 1. Concerning the selection of the initial
parameter guess µ̂(0), the following observations are in order.

Algorithm 1 Parameter estimation
1: On each day d
2: k′ ← kd
3: while k′ + lmin − 1 ≤ kd do
4: for k = k′ : k′ + lmin − 1 do ▷ Get the initial data set D(Jk,lmin )
5: Acquire D(k)
6: end for
7: if D(Jk,lmin ) does not satisfy T1, T2, T3 then
8: k′ ← k′ + 1 ▷ D(k′) is rejected and the algorithm is reset at

time k′+ 1
9: else

10: l← lmin
11: do ▷ Try to increase the window length by one
12: k← k+ 1
13: l← l+ 1
14: Acquire D(k)
15: while D(Jk,l) satisfies T1, T2, T3 and k ≤ kd
16: Compute updated parameter estimate µ̂(k) via RLS using

D(Jk−1,l−1)
17: k′ ← k+ 1
18: end if
19: end while

• As previously stated, a good guess for the main power/
irradiance gain µ1 is represented by µ̂1(0) = Pnom/1000,
where Pnom denotes the nominal plant power (Bianchini
et al., 2013a; Pepe et al., 2017). As pointed out in Remark 1,
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it is appropriate to start with an underestimate of this value,
e.g., 75%, to ensure faster parameter adaptation.
• As for the initial values µ̂2(0) and µ̂3(0), it is convenient

to choose them so that µ2(0)/µ1(0) and µ3(0)/µ1(0) are
equal to the central values of the intervals S2 and S3 in (5),
respectively (Pepe et al., 2017).

5. Experimental results

Two experiments have been run to evaluate the performance
of the proposed estimation algorithm. In the first one, both model
estimation and validation have been conducted using measured
data (power and temperature for estimation, irradiance and tem-
perature for forecasting) in order to assess the performance of the
estimation procedure net of errors due to inaccuracies of weather
forecasts. In the second, meteorological predictions have been
used both for model parameter fitting and generation forecasting.
The latter scenario corresponds to a typical DSO use case. To
this purpose, the forecasting performance of the PVUSA model
estimated using the proposed procedure has been evaluated on
the widely used Day-Ahead (DA) and Hour-Ahead (HA) fore-
casts (International Energy Agency, 2013). The details on how
such forecasts can be computed from the estimated model are
omitted here due to space limitations and the reader is referred to
Section 5 of Pepe et al. (2017). The following standard error mea-
sures are employed: Root Mean Square Error (RMSE), Mean Bias
Error (MBE), Mean Absolute Percentage Error (MAPE), Normalized
RMSE (NRMSE), R2

= 1 − NRMSE2. Details on how such indices
are computed in the specific contexts of DA or HA forecasting are
provided in Pepe et al. (2017). Two further indices, i.e., RMSENP
and MAPENP , are the normalized values of RMSE and MAPE with
respect to the nominal plant power Pnom and are of practical
interest for network operation. In particular, values lower than
10% are considered acceptable for network operation (Coimbra
et al., 2013; Widiss & Porter, 2014).

The performance indices achieved using the proposed ap-
proach have been compared to those obtained using both the
One-Day-ahead Naive Predictor (ODNP) and a PVUSA model
estimated via a standard RLS algorithm in the complete infor-
mation case, i.e., using actual measurements of generated power,
irradiance and temperature (SRLS).

For the two experiments performed, the following data sets
have been used, respectively:

(D1) data from a PV plant P1 with nominal power Pnom =
960 kWp located in the campus of the University of Salento, in
Monteroni di Lecce, Puglia, Italy (see Malvoni, De Giorgi, and Con-
gedo (2016) for details). Data, ranging from March 5th, 2012 to
December 31st, 2013, consist of hourly samples of averaged mea-
sured power Pm(k), air temperature Tm(k), and normal irradiance
(the latter used only for comparison in the SRLS benchmark);

(D2) data from a PV plant P2 with nominal power Pnom =
920 kWp located in Sardinia. Data, ranging from February 2nd,
2012, to May 1st, 2012, consist of hourly samples of averaged
measured power Pm(k), one day-ahead forecasts of air temper-
ature T̂ (k), and one day-ahead forecasts of normal irradiance.
Information about the quality of such forecasts is reported in
Table 1 of Bianchini et al. (2019).

The sampling time has been chosen equal to τs = 1 h, and
Ics(k) has been generated using the Heliodon model. Clearly, only
time indices k corresponding to hours of light have been consid-
ered. The minimum window length has been set to lmin = 3. Tak-
ing higher values has proven to make the algorithm unnecessarily
selective for the chosen sampling time.

The initial parameter vector has been chosen according to
the criteria in Section 4, i.e., µ̂1(0) = 0.75 Pnom/1000, µ̂2(0) =
−1.34× 10−4 · µ̂1(0), and µ̂3(0) = −3.25× 10−3 · µ̂1(0). Further

Table 1
Performance comparison of CSD, SRLS and ODNP computed starting from day
28 (D1).

Performance indices CSD SRLS ODNP

DA Forecast

RMSE (kW) 31.0 23.1 143.2
MAPE 31% 26% 109%
MBE (kW) −7.01 −6.73 3.00
R2 0.98 0.99 0.65
NRMSE 0.13 0.10 0.59
RMSENP 0.032 0.024 0.15
MAPENP 2.2% 1.5% 8.4%

details on the setup can be found in Section 7.1 of Bianchini
et al. (2019). Concerning the choice of ϵ, it is worth recalling (see
Remark 1) that in order for CS test 3 to reject uniformly cloudy
data with a CCF β ≤ β0, ϵ can be chosen approximately as

ϵ = 1−
Pnom
1000

·
1
µ̂1
· β0, (30)

where µ̂1 represents the currently available estimate of µ1.
Therefore, we find it convenient to fix the CCF bound β0 and
adjust ϵ dynamically via (30) as soon as a new estimate µ̂1 is
computed. In this respect, we observe that the range of variability
of the CCF depends on the climate of the macro-area where the
plant is located, which is usually available. For the Italian case,
typical values of the CCF range from 0.5 to 1 (Spena, D’Angiolini,
& Strati, 2010). In the experiments of this section, we choose β0 =

0.9. However, higher/smaller values of β0 within the typical vari-
ability range make the CS detection algorithm more/less selective.
The evaluation of this effect for the proposed experiments is not
presented here due to space limitations; an extensive discussion
can be found in Bianchini et al. (2019).

5.1. Validation on measured data (D1)

The proposed method (denoted as CSD) has been evaluated
with reference to day-ahead (DA) forecasts (Pepe et al., 2017) by
taking actual measurements of meteorological variables as the
respective forecasts. The performance is compared with that of
both the ODNP and the SRLS.

The time evolution of the parameters estimated using CSD and
SRLS algorithms are shown in Fig. 1. Since the two algorithms
use different data, namely theoretical irradiance for CSD and
measured irradiance for SRLS, it is not surprising that parameters
tend to slightly different values.

As far as the forecasting performance is concerned, all error
measures on DA predictions were computed over the period
starting from day 28, in order to guarantee at least a rough
adaptation of the model parameters. In Table 1 the performance
indices achieved by the proposed CSD approach are compared
with SRLS and ODNP. Errors computed on CSD and SRLS are
comparable and clearly show better performance with respect to
the ODNP.

A visual representation of the algorithm behavior with special
attention to clear-sky detection is shown in Fig. 2. In those graphs,
sequences of red markers denote time windows in which the
measured power is detected as being generated under a clear-
sky condition. The plots show three, non consecutive days: days
32 and 419 are completely clear-sky; day 91 is a partially clear-
sky day, in which about a half of the samples is rejected by the
algorithm.

Finally, in Fig. 3, DA forecasts provided by CSD and SRLS during
three different days and under three different weather conditions
are compared with the measures of generated power.
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Fig. 1. PVUSA parameters estimation using the CSD algorithm (red line) and a SRLS algorithm (blue line). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Visual representation of an algorithm run (D1). Measured power is in blue, current predicted clear-sky power is in green, red markers denote detected
clear-sky windows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (D1): Comparison between the measured power (dash dot line), DA CSD forecast (red line) and DA SRLS forecast (blue line). From right to left, a clear-sky
day, an overcast day and a partially clear-sky day. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

5.2. Validation on predicted data (D2)

In this section a typical DSO scenario is reproduced, in which
it is assumed that measurements of weather variables are not
available at the plant site. Therefore, measured power and tem-
perature forecasts are used to estimate the plant parameters,
while irradiance and temperature forecasts are used to cast pre-
dictions of generated power. In this scenario, the performance of
the proposed method has been evaluated with reference to both
day-ahead (DA) and hour-ahead (HA) forecasts, and compared
with the performance achieved by SRLS and ODNP. Forecasting
error measures are reported in Table 2. While the ODNP still has
the worst performance indices, CSD performs even better than
SRLS. However, it should be observed that forecasting errors in
this case are to a large extent due to the quality of weather
reports (see Table 1 in Bianchini et al. (2019)).

Three examples of DA forecasts computed using the CSD ap-
proach and SRLS during different weather conditions are shown
in Fig. 4.

5.3. Further remarks

With reference to Tables 1 and 2, it is important to observe
that the normalized errors (MAPENP ) computed on DA forecasts

Table 2
Performance comparison of CSD, SRLS and ODNP computed starting from day
28 (D2).

Performance indices CSD SRLS ODNP

DA Forecast

RMSE (kW) 117.9 118.5 193.3
MAPE 58.8% 55.2% 85.6%
MBE (kW) −7.69 35.6 −5.6
R2 0.799 0.797 0.458
NRMSE 0.448 0.451 0.736
RMSENP 0.128 0.129 0.201
MAPENP 8.3% 9.8% 12.4%

HA Forecast

RMSE (kW) 138.2 136.2 –
MAPE 52.1% 46.0% –
MBE (kW) −25.8 33.0 –
R2 0.655 0.665 –
NRMSE 0.588 0.579 –
RMSENP 0.150 0.148 –
MAPENP 10.0% 11.9% –

are below 10%, which demonstrates viability for network opera-
tion. Furthermore, the performance indices achieved by CSD are
very close to those obtained by SRLS, i.e., via a PVUSA model
estimated using measured irradiance. It is also worth pointing
out that CSD significantly improves over Bianchini et al. (2013a,
2013b) as far as all error measures are concerned. In particular,
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Fig. 4. (D2): Comparison between measured power (dash dot line), DA CSD forecast (red line) and DA SRLS forecast (blue line). From right to left, a clear-sky day,
an overcast day and a uniformly overcast day. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

on data set (D2) it bears a 45% reduction in (MAPENP ) and a 39%
reduction in (RMSENP ) for DA forecasts.

The proposed algorithm has been implemented in Scilab. Each
iteration took on average less than one second on an i7 2.6
Ghz processor, thus demonstrating that the approach carries an
extremely low computational burden.

6. Conclusions

In this paper, an efficient technique for estimating a fore-
casting model of photovoltaic power generation from limited
information has been proposed. The approach is based on a set
of tests performed on power data combined with a recursive es-
timation framework. It only exploits the time series of generated
power and forecasts of temperature, the latter obtained from a
meteorological service. The procedure especially fits the typical
scenario where the network operator has no access to on-site
measurements of irradiance and temperature, due to the large
number of plants connected to the grid.

The algorithm has been extensively validated on two plants lo-
cated in Italy, both on measured data and on forecasts of weather
variables. The latter case reproduces a typical DSO scenario. Ex-
periments worked out show very good forecasting performance,
with limited computational burden.
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